jueves, 26 de noviembre de 2015

CAMBIO CLIMÁTICO Y PATÓGENOS EMERGENTES EN LAS ETA DEL SIGLO XXI (Parte 6)

"Los lugares más obscuros del Infierno, están reservados para los que mantienen su neutralidad en épocas de crisis moral" 
(La Divina Comedia - Dante Alighieri)


Cambio Climático y Patógenos Emergentes en las ETA(s) 
del siglo XXI (Parte 6)


Escherichia coli


Está presente en grandes concentraciones en la microflora intestinal normal de las personas y los animales donde, por lo general, es inocua. Sin embargo, en otras partes del cuerpo E. coli puede causar enfermedades graves, como infecciones de las vías urinarias, bacteriemia y meningitis. Un número reducido de cepas enteropatógenas pueden causar diarrea aguda. Se han determinado varios tipos de E. coli enteropatógenas, basándose en diferentes factores de virulencia: E. coli enterohemorrágica (ECEH), E. coli enterotoxígena (ECET), E. coli enteropatógena (ECEP), E. coli enteroinvasiva (ECEI), E. coli enteroagregativa (ECEA) y E. coli de adherencia difusa (ECAD). Se cuenta con más información sobre los primeros cuatro tipos mencionados, pero se conocen peor la patogenicidad y la prevalencia de cepas de ECEA y ECAD. 




Los serotipos de ECEH, como E. coli O157:H7 y E. coli 0111, producen diarrea que puede ser desde leve y no hemorrágica hasta altamente hemorrágica, siendo esta última indistinguible de la colitis hemorrágica. Entre el 2% y el 7% de los enfermos desarrollan el síndrome hemolítico urémico (SHU), que puede ser mortal y se caracteriza por insuficiencia renal aguda y anemia hemolítica. Los niños menores de cinco años son los que tienen más riesgo de desarrollar el SHU.La infectividad de las cepas de ECEH es sustancialmente mayor que la de otras cepas: tan solo 1000 bacterias pueden causar una infección. ECET produce enterotoxinas de E. coli termolábiles o termoestables, o ambas simultáneamente, y es una causa importante de diarrea en países en desarrollo, sobre todo en niños de corta edad. Los síntomas de la infección por ECET son diarrea acuosa ligera, cólicos, náuseas y cefalea. La infección por ECEP se ha asociado con diarrea no hemorrágica crónica e intensa, vómitos y fiebre en los lactantes.


Las infecciones por ECEP son poco frecuentes en países desarrollados, pero comunes en países en desarrollo, donde produce desnutrición, pérdida de peso y retraso del crecimiento en los lactantes. ECEI produce diarrea acuosa y, en ocasiones hemorrágica; estas cepas invaden las células del colon mediante un mecanismo patógeno similar al de Shigella. Las E. coli enteropatógenas son microorganismos entéricos y las personas son el reservorio principal, sobre todo de las cepas de ECEP, ECET y ECEI. El ganado, como las vacas y ovejas y, en menor medida, las cabras, los cerdos y los pollos, son una fuente importante de cepas de ECEH, las cuales también se han asociado con hortalizas crudas, como los brotes de frijoles. Estos agentes patógenos se han detectado en diversos ambientes acuáticos. La infección se asocia con la transmisión de persona a persona, el contacto con animales, los alimentos y el consumo de agua contaminada. La transmisión de persona a persona es particularmente frecuente en comunidades donde hay personas en proximidad estrecha, como en residencias y guarderías. 


La transmisión de cepas patógenas de E. coli por medio de aguas recreativas y de agua de consumo contaminada está bien documentada. Recibió gran atención el brote de transmisión por el agua de la enfermedad causada por E. coli 0157:H7 (y Campylobacter jejuni) en la población agrícola de Walkerton, en Ontario, Canadá. El brote tuvo lugar en mayo de 2000 y ocasionó siete muertes y más de 2300 casos de enfermedad. El agua de consumo se contaminó por agua de escorrentía que contenía excrementos de ganado.  En un PSA, pueden aplicarse las siguientes medidas de control para hacer frente al riesgo potencial de E. coli enteropatógenas: protección de las fuentes de agua bruta de los residuos humanos y animales, tratamiento adecuado y protección del agua durante su distribución.


No hay ningún indicio de que la respuesta de las cepas enteropatógenas de E. coli a los procedimientos de tratamiento y desinfección del agua sea diferente de la de otras cepas de E. coli. Por lo tanto, los análisis convencionales de E. coli (o bien de bacterias coliformes termotolerantes) son un índice adecuado de la presencia de serotipos enteropatógenos en el agua de consumo. Esto es cierto, a pesar de que los análisis normales generalmente no detectan las cepas de ECEH. Se considera que Escherichia coli es el índice de contaminación fecal más adecuado. En la mayoría de las circunstancias, las poblaciones de coliformes termotolerantes se componen predominantemente de E. coli; por lo tanto, este grupo se considera un índice de contaminación fecal aceptable, pero menos fiable que E. coli. Escherichia coli (o bien los coliformes termotolerantes) es el microorganismo de elección para los programas de monitoreo para la verificación, incluidos los de vigilancia de la calidad del agua de consumo.


Estos microorganismos también se utilizan como indicadores de desinfección, pero los análisis son mucho más lentos y menos fiables que la medición directa de la concentración residual de desinfectante. Además, E. coli es mucho más sensible a la desinfección que los protozoos y virus entéricos. Hay grandes cantidades de Escherichia coli en las heces humanas y animales, en las aguas residuales y en el agua que ha estado expuesta recientemente a contaminación fecal. Es muy poco probable que la disponibilidad de nutrientes y la temperatura del agua en los sistemas de distribución de agua de consumo favorezcan la proliferación de estos microorganismos. La concentración de Escherichia coli (o bien de coliformes termotolerantes) se mide, por lo general, en muestras de 100 ml de agua. Para ello existen diversos procedimientos relativamente sencillos basados en la producción de ácido y gas a partir de la lactosa.


La presencia de E. coli (o bien de coliformes termotolerantes) es un indicio de contaminación fecal reciente, por lo que tras su detección debería considerarse la toma de medidas adicionales, como la realización de muestreos adicionales y la investigación de las posibles fuentes de contaminación, como un tratamiento inadecuado o alteraciones de la integridad del sistema de distribución. Últimamente ha tomado gran connotación periodística el impacto sanitario producido por la contaminación de cierto grupo de alimentos por el agente Escherichia coli enterohemorrágica (EHEC), uno entre tantos agentes productores de Enfermedades Transmitidas por Alimentos (ETA), que forman parte de uno de los componentes de la Inseguridad Alimentaria que vivimos todos aquellos que tenemos acceso físico a los alimentos (y a consumirlos).




Síndrome Urémico Hemolítico (SUH o SHU)


Durante el último año fueron notificados más de 700.000 episodios de diarreas en Argentina, de los cuales casi 300 mil ocurrieron en menores de 5 años. Las más afectadas fueron las provincias de Buenos Aires, Salta, Jujuy, Santa Fe, Chaco, Tucumán, Misiones, Formosa y San Juan. En particular, nos referiremos al denominado Síndrome Urémico Hemolítico o Síndrome de Gasser. Mucho se ha dicho y escrito, pero entendemos que la bibliografía científica utilizada, perteneciente a destacados profesionales nacionales de la Salud Pública, es de excelencia y la más adecuada para la elaboración de este informe. Resulta interesante destacar que en las primeras observaciones, en la década del 50 y del 60, surgen interpretaciones tanto clínicas como etiológicas y patogénicas, que luego fueron desplazadas por otras o relegadas al olvido para cobrar nuevamente vigencia en la actualidad enriquecidas con estudios y observaciones de los últimos años. En 1966 (Voyer y Walther, 1966), no hacían diferenciación entre la Púrpura Trombótica Trombocitopénica (PFT) y el SUH más que por la edad de presentación y la extensión de las lesiones.


Posteriormente se desvinculó a estas entidades, diferenciando netamente por un lado la PTT o Síndrome de Moschcowitz Symmer de presentación especialmente en jóvenes adultos con sintomatología predominantemente neurológica, lesiones microvasculares diseminadas, evolución generalmente fatal y etiología desconocida y por otro el SUH o Síndrome de Gasser de presentación principalmente en niños de corta edad, precedido generalmente por diarrea sanguinolenta. Por ello se postuló que SUH y PTT pueden ser gradientes sintomáticas de una misma enfermedad referida genéricamente como Microangiopatía Trombótica (MAT, Kaplan, 1995. En 1955 Gasser, en Suiza, describe 5 casos, 4 de los cuales eran lactantes e introduce la denominación de Síndrome Hemolítico Uremígeno. También se han utilizado denominaciones como Acroangiopatía Trombocítica, Trombopatía Plaquetaria Difusa y Acroangiotrombosis Verrugosa Trombopénica. Toda la nomenclatura estuvo así basada en las alteraciones hematológicas y las lesiones microvasculares de trombosis. En 1962, Gianantonio presenta en la Sociedad Argentina de Pediatría 47 observaciones del Hospital de Niños Ricardo Gutierrez de Buenos Aires, recopiladas desde 1957, a lo que suma posteriormente nuevos casos. En los años 1963 y 1964 los uruguayos hacen sus primeras observaciones.


Garrahan, en la 1ra. Cátedra de Pediatría refiere 15 casos y en el interior del país, López Pondal, 3 a los que deben sumarse otros dos observados también en Tucumán por el Dr. Eduardo Martínez. Publicaciones de centros asistenciales de todo el país muestran el interés que ha despertado esta enfermedad entre nosotros y el incremento continuo de su incidencia que hace de la Argentina la zona endémica más afectada del mundo. La casuística acumulada hasta la fecha es de más de 7.000 casos, lo que supera a lo observado en todo el resto del mundo. Hoy en día se presenta así el estudio de toxinas liberadas por enterobacterias, como la línea más promisoria para la comprensión epidemiológica de la enfermedad en su presentación endémica tanto en los casos esporádicos como epidémicos. Hasta ahora esto se ha referido a la Shiga-like toxina producida por cepas de E. coli y a la toxina Shiga producida por la Shigella disentería tipo 1 y ocasionalmente por la Shigella flexneri, como también lo observamos nosotros, pero parece ser también extensivo a otras citotoxinas producidas por bacterias como Clostridium difficile, Yersinia enterocolítica y Campilobacter. 


El Síndrome Urémico Hemolítico (SUH) es la causa más frecuente de insuficiencia renal aguda (IRA) en los niños (en la mitad de los casos necesita diálisis). Es un síndrome que incluye IRA, trombocitopenia (disminución del número de plaquetas en la sangre) y hemólisis (destrucción de los glóbulos rojos que lleva a una anemia). Es producido, en la mayoría de los casos, por toxinas producidas por una bacteria: Escherichia coli O157:H7. La toxina producida por este serogrupo de E coli se denomina shiga toxina, por ser similar a la producida por Shigella. La muerte por síndrome urémico hemolítico disminuyó gracias a la precocidad de los diagnósticos y a los nuevos métodos de control de la insuficiencia renal. Hoy, la tasa de letalidad es del 2 por ciento. Según datos del Comité Nacional de Nefrología, el 70 por ciento de los niños que padecen esta enfermedad se recuperan sin secuelas, sin embargo, es necesario controlarlos regularmente porque, en algunos casos, desarrollan problemas renales o hipertensión como consecuencia tardía del síndrome. Escherichia coli O157:H7 y otros serotipos de E. coli productor de toxina Shiga (STEC: Shiga Toxin E. coli).


En 1982 fue reconocido por primera vez como patógeno humano responsable de dos brotes de diarrea sanguinolenta severa que afectaron a 47 personas en EE.UU. Los brotes fueron asociados epidemiológicamente con hamburguesas contaminadas, consumidas en restaurantes pertenecientes a unacadena de comidas rápidas. A partir de entonces numerosos brotes han sido notificados en distintas partes del mundo. Hoy se sabe que E. coli O157:H7 es el prototipo de un grupo de más de 150 serotipos de E. coli (O26:H11; O103:H2; O111:NM; O113:H21; O145:NM; entre otros) que comparten el mismo potencial patogénico. Los serotipos de STEC (Calderwood y col., 1996), asociados a enfermedades severas en el hombre pertenecen a la categoría de E. coli enterohemorrágico (EHEC: enterohemorrhagic E. coli). Los serotipos de la VTEC (Vero Toxygenic Escherichia coli) asociados a la producción de enfermedad en el hombre son los que corresponden a la clasificación de enterohemorrágicos (EHEC) Esta designación alude a su capacidad de producir lesiones hemorrágicas en el intestino. Los animales domésticos, especialmente los rumiantes, constituyen el principal reservorio natural de STEC.


La prevalencia en vacunos oscila entre 0,1 y 16%. Ha sido aislado también de heces de gansos, ovinos, equinos, perros, cabras y ciervos.  El ganado lechero y particularmente los terneros y vaquillonas serían portadores más frecuentes que el ganado adulto. También fue aislado del ganado de carne, específicamente de terneros con diarrea, en donde STEC no sería el causante de esta patología. A partir de un estudio de caracterización de E. coli O157:H7 aislados a partir de terneros, se confirmó que es “importante el papel del ganado bovino en la epidemiología de las enfermedades producidas por este agente patógeno en el hombre” y que “las cepas aisladas de ganado poseían todos los factores de virulencia necesarios para producir enfermedad en humanos”. Existen también diferencias geográficas en la incidencia del SUH y su forma de presentarse. En particular, en la Argentina no han ocurrido brotes de magnitud semejante a los de EE.UU. y la estadística señala más bien la aparición de numerosos casos esporádicos.


Contrariamente a lo esperado, el síndrome urémico hemolítico, se presenta en niños de hogares con un buen nivel socioeconómico. Si bien se registran casos durante todo el año, su frecuencia aumenta en la primavera, alcanzando un máximo durante el verano, para luego decrecer hacia el otoño. La carne picada, insuficientemente cocida, y los lácteos y jugos sin pasteurizar como el vehículo más frecuente de brotes de ETA (Enfermedades Trasmitidas por Alimentos) causados por este organismo. La colitis hemorrágica ha sido transmitida además por embutidos fermentados, leche cruda, yogures artesanales, sidra de manzana y mayonesa. Los brotes que han involucrado alimentos ácidos demuestran la tolerancia de los organismos causales a pH bajos. Estos microorganismos también han sido aislados de productos vegetales, la contaminación de vegetales puede ser consecuencia del uso de abonos orgánicos de origen bovino.


También el agua ha sido considerada vehículo de transmisión, habiéndose informado de brotes asociados a la ingestión de agua de bebida no clorada, o del contacto con piletas de natación y también de un lago contaminado. También se ha identificado a la materia fecal bovina como una fuente de contaminación para alimentos y agua. No obstante, la dinámica de STEC, en su relación reservorio - medio ambiente, no está totalmente dilucidada. Actualmente se ha convertido en uno de los desafíos más fuertes para la industria de la carne. La transmisión persona a persona es también una vía importante para adquirir la infección debido a la baja dosis infectiva (50 – 100 ufc). Ingresa al organismo por la ingesta de carne (especialmente mal cocida), o por otros alimentos que hayan estado en contacto con la materia fecal de la vaca, como leche no pasteurizada, verduras y frutas mal lavadas, aguas contaminadas, etc.


Los humanos contaminados pueden contagiar a otros directamente o a través de la contaminación de alimentos. También la contaminación fecal de las aguas o la falta de higiene en el procesamiento industrial puede explicar la presencia de esa bacteria en los pescados.Es importante conocer el origen de los alimentos y en aquellos que los posean, leer muy bien los rótulos, cómo han sido conservados y procesados, observar la higiene, el cumplimiento de la cadena de frío y el grado de cocción. En esta situación lo más valioso es la prevención. La contaminación fecal del agua y otros alimentos y la contaminación cruzada durante la preparación de los alimentos son rutas importantes en la transmisión de la infección. Es importante destacar que STEC sobrevive a las temperaturas de refrigeración y congelación y puede desarrollar a 8ºC. Esta característica tiene un tremendo impacto tanto en la industria de la carne, como en los sectores de comercialización en donde el uso del frío está muy extendido. Cepas de E. coli enterohemorrágica (EHEC) han sido aisladas de una gran variedad de alimentos y del medio ambiente, esto implica distintas condiciones en término de nutrientes, pH, salinidad y temperatura.


Recientes brotes de diarrea y SUH han sido asociados al consumo de alimentos como el jugo de manzana, mayonesa y embutidos fermentados, alimentos de naturaleza ácida. Benjamin y Datta han demostrado que E. coli O157:H7 posee una gran tolerancia a pH menores a 3 sin pérdida de la viabilidad. Si bien la carne vacuna resulta la principal fuente de contagio, el consumo de lácteos y jugos de fruta no pasteurizados o de verduras y agua contaminada (que hayan estado en contacto con las heces de los animales), también puede desencadenar la enfermedad. La República Argentina es el país donde se diagnostica la mayor cantidad de casos en todo el mundo, alrededor de 300 a 350 casos nuevos por año. Generalmente afecta a lactantes, niños entre 6 a 36 meses de edad. Existen brotes en los meses más cálidos, pero aparecen nuevos casos durante todo el año. Comienza con una diarrea con moco, sangre o ambos en niños previamente sanos. Luego de tres o cuatro días aparece palidez, como expresión de anemia, es decir, que el niño se ve pálido porque empiezan a bajar los glóbulos rojos. 


Los riñones empiezan a fallar en su trabajo para eliminar sustancias tóxicas, por eso aumentan en la sangre la urea y la creatinina. En la mitad de los niños con esta enfermedad, esa falla de la función del riñón puede ser tan grave que el niño deje de orinar. En ese caso es necesario tratarlo con diálisis. Si bien esta contaminación primaria o endógena, en la que el material infeccioso proviene del propio animal no puede evitarse totalmente, es posible reducirla considerablemente si se extreman las medidas higiénicas, siguiendo las normas establecidas en el Reglamento de Inspección de Productos, Subproductos y Derivados de Origen Animal (decreto 4238/68 del Ministerio de Economía, Secretaría de Agricultura y Ganadería, SENASA).



Medidas de prevención

• Asegurar la correcta cocción de la carne; la bacteria se destruye a los 70º C. Esto se consigue cuando la carne tiene una cocción homogénea cuando no quedan partes rojas).
• Tener especial cuidado con la cocción de la carne picada.
• Utilizar distintos utensilios de cocina para cortar o tomar la carne cruda y la carne una vez cocida (Contaminación cruzada indirecta)
• Evitar el contacto de las carnes crudas con otros alimentos; tener en cuenta cómo se disponen dentro de la heladera y en mesadas. (Contaminación cruzada directa).
• Consumir leche, derivados lácteos y jugos de frutas pasteurizados y conservar la cadena de frío
• Lavar cuidadosamente las verduras y frutas.
• Asegurar la correcta higiene de las manos (deben lavarse con agua y jabón), antes de preparar los alimentos y luego de ir al baño como mínimo.
• Se sugiere que los menores de 2 años no ingieran comidas rápidas.
• Respetar la prohibición de bañarse en aguas contaminadas. Concurrir a piletas de natación habilitadas para tal fin.
• Consumir agua potable. Ante la duda, hervirla y agregar lavandina concentrada. Por este motivo, se aconseja consumir agua potable o de lo contrario; hervir agua en un recipiente limpio y tapado de tres a cinco minutos y no más; dejar enfriar el agua y conservarla en el mismo recipiente o agregar dos gotas de lavandina concentrada por cada litro de agua y esperar 30 minutos para ser consumida.
• Ante cualquier duda o síntoma, consultar al médico o dirigirse al centro de salud más cercano a su domicilio.



Las medidas preventivas para controlar la transmisión de la infección son

a) de higiene durante el faenamiento del ganado;
b) aplicación de controles en los puntos críticos de la elaboración de alimentos;
f) evitar el hacinamiento en comunidades cerradas (jardines maternales, jardines de infantes, cárceles, etc.);
g) no concurrencia a comunidades cerradas de personas con diagnóstico bacteriológico positivo;
h) evitar el uso de antimicrobianos y antidiarreicos, considerados factores de riesgo en la evolución de diarrea a SUH;
i) educación de médicos, veterinarios, microbiólogos, personal de plantas elaboradoras de alimentos y restaurantes, de jardines maternales, de infantes y geriátricos y la comunidad en general sobre los riesgos que implica la infección por STEC.



Estreptococo fecal


Los enterococos intestinales incluyen las especies del género Streptococcus y son un subgrupo del grupo más amplio de los estreptococos fecales. Estas bacterias son grampositivas y relativamente tolerantes al cloruro sódico y al pH alcalino. Son anaerobias facultativas y pueden encontrarse aisladas, en parejas o en cadenas cortas. Todos los estreptococos fecales, incluidos los enterococos intestinales, dan una reacción positiva con antisueros anti grupo D de Lancefield y se han aislado en las heces de animales de sangre caliente. El subgrupo de los enterococos intestinales está formado por las especies Enterococcus faecalis, E. faecium, E. durans y E. hirae. Este grupo se separó del resto de los estreptococos fecales porque son índices relativamente específicos de contaminación fecal. Sin embargo, ocasionalmente, algunos enterococos intestinales aislados del agua pueden también proceder de otros hábitats, como el suelo, en ausencia de contaminación fecal. 


El grupo de los enterococos intestinales puede utilizarse como índice de contaminación fecal, ya que la mayoría de las especies no proliferan en medios acuáticos. La concentración de enterococos intestinales en las heces humanas es, generalmente, alrededor de un orden de magnitud menor que la de E. coli. Este grupo presenta importantes ventajas: tienden a sobrevivir durante más tiempo que E. coli (o que los coliformes termotolerantes) en medios acuáticos, y son más resistentes a la desecación y a la cloración. Los enterococos intestinales se han utilizado en el análisis del agua bruta como índice de la presencia de agentes patógenos fecales que sobreviven durante más tiempo que E. coli y en agua de consumo para complementar los análisis de E. coli. También se han utilizado para analizar la calidad del agua después de la realización de reparaciones en sistemas de distribución o de la instalación de cañerías nuevas. Los enterococos intestinales se excretan habitualmente en las heces humanas y de otros animales de sangre caliente. Algunas especies de este grupo también se han detectado en suelos, en ausencia de contaminación fecal.


Hay concentraciones altas de enterococos intestinales en las aguas residuales y en los medios acuáticos contaminados por aguas residuales o por residuos humanos o animales. Los enterococos se pueden detectar mediante medios de cultivo sencillos y baratos para los que únicamente se necesitan laboratorios de bacteriología básicos. Uno de los métodos utilizados comúnmente es la filtración con membranas, incubación de las membranas en medios selectivos a entre 35 y 37ºC durante 48 h y posterior recuento de las colonias. Otros métodos son la técnica del «número más probable» mediante placas de microvaloración en la que la detección se basa en la capacidad de los enterococos intestinales de hidrolizar el 4-metil-umbeliferil-β-D-glucósido en presencia de acetato de talio y de ácido nalidíxico en 36 h a 41ºC. La presencia de enterococos intestinales es un indicio de contaminación fecal reciente, por lo que tras su detección debería considerarse la toma de medidas adicionales, como la realización de muestreos adicionales y la investigación de las posibles fuentes de contaminación, como un tratamiento inadecuado o alteraciones de la integridad del sistema de distribución.



 "SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HABITO"

ARISTOTELES



LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.


jueves, 19 de noviembre de 2015

CAMBIO CLIMÁTICO Y PATÓGENOS EMERGENTES EN LAS ETA DEL SIGLO XXI (Parte 5)

"Los lugares más obscuros del Infierno, están reservados para los que mantienen su neutralidad en épocas de crisis moral" 
(La Divina Comedia - Dante Alighieri)




Cambio Climático y Patógenos Emergentes en las ETA(s) 
del siglo XXI (Parte 4)


Acinetobacter




El género Acinetobacter está formado por cocobacilos (con forma de bastón corto y grueso) gramnegativos, oxidasa negativos, inmóviles. Dada la complejidad de la nomenclatura de especies y biovariedades individuales, algunos sistemas de clasificación utilizan la expresión «complejo Acinetobacter calcoaceticus-baumannii», que abarca todos los subgrupos pertenecientes a esta especie, como A. baumannii, A. iwoffii y A. junii. Las bacterias del género Acinetobacter suelen ser comensales, pero en ocasiones producen infecciones, sobre todo en pacientes vulnerables, en los hospitales. Son patógenos oportunistas que pueden ocasionar infecciones de las vías urinarias, neumonía, bacteriemia, meningitis secundaria e infecciones de heridas.


Las acinetobacterias son ubicuas en el suelo, el agua y las aguas residuales. Se ha aislado Acinetobacter en el 97% de muestras de aguas superficiales naturales, en concentraciones de hasta 100 bacterias/mililitro. Se ha comprobado que estos microorganismos representan del 1,0 al 5,5% de los microorganismo detectados mediante RHP en muestras de agua de consumo y han sido aislados en entre el 5 y el 92% de las muestras de agua de distribución. Un estudio en los EE. UU. de aguas subterráneas no tratadas detectó Acinetobacter spp. en el 38% de las aguas subterráneas, siendo la densidad promedio de 8 bacterias/100 ml. El estudio reveló también que la producción de moco, un factor de virulencia de A. calcoaceticus, de aislados de agua de pozo no era significativamente diferente de la de cepas clínicas, lo que sugiere que las cepas aisladas de aguas subterráneas poseen cierto potencial patógeno. Acinetobacter spp. son parte de la flora microbiana natural de la piel y, en ocasiones, del aparato respiratorio de personas sanas.


La ingestión no es una fuente de infección Si bien se detectan frecuentemente acinetobacterias en aguas de consumo tratadas, todavía no se ha confirmado que exista una asociación entre la presencia de Acinetobacter spp. en agua de consumo y la enfermedad clínica. No hay pruebas de infecciones gastrointestinales en la población general por ingestión de Acinetobacter spp. presentes en el agua de consumo. No obstante, el agua de consumo puede transmitir infecciones no gastrointestinales a personas vulnerables, sobre todo en entornos como centros de salud y hospitales.



Aeromonas



El género Aeromonas, perteneciente a la familia Vibrionaceae, está formado por bacilos gramnegativos, no esporulantes y anaerobios facultativos. Presentan numerosas similitudes con la familia Enterobacteriaceae. Estas bacterias viven de manera habitual en el agua dulce y están presentes en el agua, el suelo y muchos alimentos, especialmente en la carne y la leche. A pesar de que las aeromonas producen cantidades importantes de toxinas in vitro, no se ha presentado diarrea en los animales de experimentación ni en voluntarios humanos. Hay presencia de Aeromonas spp. en el agua, el suelo y los alimentos, especialmente en la carne, el pescado y la leche. Por lo general, es fácil encontrar Aeromonas spp. en la mayoría de las aguas dulces, y se han detectado en muchas aguas de consumo tratadas, principalmente debido a su proliferación en sistemas de distribución.


No se conocen por completo los factores que afectan a la presencia de Aeromonas spp. en los sistemas de distribución de agua, pero se ha comprobado que el contenido de materia orgánica, la temperatura, el tiempo de residencia del agua en la red de distribución y la presencia de cloro residual afectan al tamaño de las poblaciones. A pesar de que se han aislado con frecuencia Aeromonas spp. en el agua de consumo, la evidencia científica no apoya, en su conjunto, de manera significativa la transmisión por el agua. Las aeromonas presentes típicamente en el agua de consumo no pertenecen a los mismos grupos de homología genética que las asociadas a los casos de gastroenteritis. La presencia de Aeromonas spp. en aguas de consumo se considera, por lo general, una molestia.


La entrada de aeromonas en los sistemas de distribución se puede minimizar mediante una desinfección adecuada. Pueden limitar la proliferación de estas bacterias en los sistemas de distribución medidas de control como el tratamiento para optimizar la eliminación del carbono orgánico, la restricción del tiempo de residencia del agua en los sistemas de distribución y el mantenimiento de concentraciones residuales de desinfectantes. El RHP detecta Aeromonas spp. y puede utilizarse, junto con parámetros como las concentraciones residuales de desinfectantes, como indicador de condiciones que podrían sustentar la proliferación de estos microorganismos. No obstante, el análisis de E. coli (o bien de coliformes termotolerantes) no puede utilizarse como índice de la presencia o ausencia de Aeromonas spp.



Bacillus


Los microorganismos del género Bacillus son bacilos de gran tamaño (4-10 μm), grampositivos, aerobios estrictos o anaerobios facultativos encapsulados. Una característica importante es que forman esporas extraordinariamente resistentes a condiciones desfavorables. Las especies del género Bacillus se clasifican en los subgrupos B. polymyxa, B. subtilis (que incluye a B. cereus y B. licheniformis), B. brevis y B. anthracis. Aunque la mayoría de las especies de Bacillus son inocuas, algunas son patógenas para las personas y los animales. Bacillus cereus causa una intoxicación alimentaria similar a la estafilocócica. Algunas cepas producen una toxina termoestable en los alimentos que se asocia con la germinación de esporas y que genera un síndrome de vómitos en un plazo de 1 a 5 horas tras la ingestión. Otras cepas producen una enterotoxina termolábil tras la ingestión que produce diarrea en 10 a 15 horas.


Se ha comprobado que Bacillus cereus causa bacteriemia en enfermos inmunodeprimidos, además de síntomas como vómitos y diarrea. Bacillus anthracis produce carbunco en personas y animales. La presencia de Bacillus spp. es frecuente en una gran variedad de ambientes naturales, como el agua y el suelo. Las infecciones por Bacillus spp. se asocian con el consumo de diversos alimentos, especialmente arroz, pastas y hortalizas, pero también leche cruda y productos cárnicos. La enfermedad puede producirse como consecuencia de la ingestión de los microorganismos o de las toxinas producidas por éstos. No se ha determinado que el agua de consumo sea un foco de infección por especies patógenas de Bacillus, incluido Bacillus cereus, y tampoco se ha confirmado la transmisión por el agua de gastroenteritis por Bacillus. 


Relevancia de su presencia en el agua de consumo Bacillus spp. se detectan con frecuencia en aguas de consumo, incluso en las que han sido tratadas y desinfectadas mediante procedimientos aceptables. Esto se debe, sobre todo, a la resistencia de las esporas a los procesos de desinfección. Al no haber indicios de que las especies de Bacillus transmitidas por el agua tengan repercusiones clínicas, no se requieren estrategias de gestión específicas.



Campylobacter



Los microorganismos del género Campylobacter son bacilos espirales y curvados gramnegativos, microaerófilos (requieren una concentración de oxígeno inferior a la atmosférica) y capnófilos (requieren una concentración alta de dióxido de carbono), y con un flagelo polar único sin vaina. Son una de las causas más importantes de gastroenteritis aguda en todo el mundo. Campylobacter jejuni es la especie que se aísla más frecuentemente en pacientes con diarrea aguda, mientras que se han aislado también C. coli, C. laridis y C. fetus en una pequeña proporción de casos. Dos géneros emparentados estrechamente, Helicobacter y Archobacter, contienen especies que se habían clasificado previamente como pertenecientes a Campylobacter. Una característica importante de C jejuni es su infectividad relativamente alta en comparación con otras bacterias patógenas: tan solo 1000 microorganismos pueden causar una infección. La mayoría de las infecciones sintomáticas se producen en la lactancia y la primera infancia.


El periodo de incubación suele ser de 2 a 4 días. Los síntomas clínicos característicos de la infección por C. jejuni son dolor abdominal, diarrea (con o sin sangre o leucocitos fecales), vómitos, escalofríos y fiebre.Varios informes han asociado la infección por C. jejuni con el síndrome de Guillain-Barré, una enfermedad desmielinizante aguda de los nervios periféricos. Hay presencia de Campylobacter spp. en diversos ambientes. Los animales silvestres y domésticos, en especial las aves de corral, las aves silvestres y el ganado, son reservorios importantes, aunque también pueden serlo los animales de compañía y otros animales. Los alimentos, incluidas la carne y la leche no pasteurizada, son fuentes importantes de infecciones por Campylobacter.


El agua también es una fuente significativa. Se ha comprobado que la presencia de los microorganismos en aguas superficiales está fuertemente ligada a la pluviosidad, la temperatura del agua y la presencia de aves acuáticas. La transmisión a las personas se produce típicamente por el consumo de productos de origen animal. La carne, en particular los productos de aves de corral, y la leche sin pasteurizar son fuentes de infección importantes. Se han detectado brotes ocasionados por aguas de consumo contaminadas. El número de casos afectados por estos brotes osciló entre unos pocos miles a varios miles, y sus fuentes fueron aguas superficiales no cloradas o clorados de forma inadecuada y la contaminación fecal por aves silvestres de embalses de almacenamiento de agua.Se ha comprobado que las aguas de consumo contaminadas son una fuente significativa de brotes de campilobacteriosis. La detección de brotes y casos transmitidos por el agua parece estar aumentando. Se ha confirmado la transmisión por el agua mediante el aislamiento de las mismas cepas de enfermos y del agua que habían consumido.


En un PSA (Plan de Seguridad del Agua), pueden aplicarse como medidas de control para gestionar el riesgo potencial de Campylobacter spp. la protección de las fuentes de agua bruta de los residuos humanos y animales, un tratamiento adecuado y la protección del agua durante la distribución. Los depósitos de agua tratada y desinfectada deben protegerse de los excrementos de aves. Campylobacter spp. son patógenos de transmisión fecal y no son particularmente resistentes a la desinfección. Por lo tanto, el análisis de E. coli (o bien de coliformes termotolerantes) es un indicador adecuado de la presencia o ausencia de Campylobacter spp. en aguas de consumo.


Helicobacter pylori, que originalmente se clasificó como Campylobacter pylori, es una bacteria gramnegativa, microaerófila, espiral y móvil. Hay al menos catorce especies de Helicobacter, pero sólo H. pylori tiene capacidad patógena comprobada para el ser humano. Helicobacter pylori se encuentra en el estómago y, aunque la mayoría de las infecciones son asintomáticas, el microorganismo se ha asociado con gastritis crónica, que puede producir complicaciones como úlceras pépticas o duodenales y cáncer de estómago, aunque todavía no está claro si el microorganismo es realmente la causa de estas enfermedades. La mayoría de las infecciones por H. pylori se inician en la infancia y, si no se tratan, son crónicas. Las infecciones tienen una mayor prevalencia en países en desarrollo y se asocian con condiciones de superpoblación. Son frecuentes las agrupaciones interfamiliares de casos.


El ser humano es, al parecer, el hospedador definitivo de H. pylori. y otros posibles hospedadores son los gatos domésticos. Hay pruebas de que H. pylori es sensible a las sales biliares, lo cual disminuiría la probabilidad de excreción por vía fecal, aunque se ha aislado en las heces de niños de corta edad. Helicobacter pylori se ha detectado en el agua. Aunque es poco probable la proliferación de H. pylori en el medio ambiente, se ha comprobado su supervivencia durante tres semanas en biopelículas y hasta 20 a30 días en aguas superficiales. En un estudio realizado en los EE. UU. se encontró H. pylori en la mayoría de las muestras de aguas superficiales y de aguas subterráneas poco profundas. No se determinó correlación entre la presencia de H. pylori y la de E. coli. La contaminación del medio ambiente puede producirse por las heces de niños con diarrea o los vómitos de niños y también de adultos.


El contacto entre personas dentro de las familias se ha señalado como la fuente de contagio más probable, por transmisión oral-oral. Helicobacter pylori puede sobrevivir fácilmente en mucosidades o vómitos; sin embargo, es difícil de detectar en muestras bucales o fecales. También se considera posible la transmisión fecal-oral. Se ha sugerido que el consumo de agua contaminada es una fuente potencial de infección, pero se necesitan estudios adicionales para establecer un posible vínculo con la transmisión por el agua. El ser humano es la fuente principal de H. pylori y el microorganismo es sensible a los desinfectantes oxidantes. Por lo tanto, para proteger las aguas de consumo de H. pylori pueden aplicarse las medidas de control siguientes: prevención de la contaminación por residuos humanos y desinfección adecuada.


Prácticamente todos los casos ocurren en eventos aislados y esporádicos, no como parte de brotes grandes. La Vigilancia activa por medio de un sistema de vigilancia especial denominado FoodNet indica que alrededor de 15 casos por cada 100,000 personas en la población, son diagnósticados cada año. Mucho más casos pasan sin diagnosticar o sin notificar y se estima que la campilobacteriosis afecta a más de 1 millones de personas cada año, o 0,5% de la población. La campilobacteriosis ocurre mucho más frecuentemente en los meses de verano que en el invierno. El organismo se aísla de lactantes y jóvenes adultos con más frecuencia que en otros grupos de edades y de los varones con más frecuencia que de las mujeres. Aunque el Campylobacter no causa por lo común la muerte, se ha estimado que 500 personas con infecciones de Campylobacter pueden morir cada año.


Campylobacter jejuni crece bien a temperatura del cuerpo de un ave y parece bien adaptada a las aves, que la transportan sin enfermar. La bacteria es frágil. No puede tolerar la deshidratación y puede destruirse mediante oxígeno. Crece sólo si existe menos oxígeno que la cantidad atmosférica en el entorno. La congelación reduce el número de bacterias de Campylobacter que se hallan presentes en la carne cruda.  La mayoría de los casos de campilobacteriosis están asociados con la manipulación de pollos crudos o la ingestión de carne de pollo cruda o no cocinada suficientemente. Un número muy pequeño de organismos Campylobacter (menos de 500) pueden ocasionar la enfermedad en los seres humanos. Incluso una gota de jugo de carne de pollo cruda puede infectar a una persona. 


Una forma de infectarse ocurre cuando se corta carne de pollo en una madera de cortar y luego se utiliza la madera de cortar sin lavarla, o el utensilio, para preparar legumbres u otro alimento crudo o ligeramente cocinado. El organismo Campylobacter procedente de la carne cruda puede propagarse a los otros alimentos. La leche no pasteurizada puede contaminarse si la vaca tiene una infección con Campylobacter en la ubre o si la leche se contamina con estiércol. El agua de superficie y las corrientes de montaña pueden contaminarse con heces infectadas de vacas o aves silvestres. Esta infección es común en el mundo en desarrollo y quienes viajan a otros países también se hallan sometidos a riesgos de contraer la infección con Campylobacter.



Cianobacterias Tóxicas


Las cianobacterias son bacterias fotosintéticas que comparten algunas propiedades con las algas: en particular, que poseen clorofila y que liberan oxígeno durante la fotosíntesis. Las primeras especies que se descubrieron eran de color verdeazulado, por lo que se conocen comúnmente como «algas verdeazuladas». No obstante, producen diversos pigmentos, de modo que muchas no son verdeazuladas, sino de colores que van del verde azulado al pardo amarillento y al rojo. La mayoría de las cianobacterias son fotótrofos aerobios, pero algunas presentan crecimiento heterótrofo. Pueden crecer como células independientes, o formando filamentos o colonias multicelulares.


Pueden clasificarse, hasta el nivel de género, basándose en el análisis microscópico de su morfología. Algunas especies forman floraciones o capas de verdín en la superficie del agua, mientras que otras permanecen suspendidas en la masa de agua y otras proliferan en el fondo (bentos). Algunas cianobacterias son capaces de regular su flotabilidad mediante vacuolas gaseosas intracelulares, y algunas especies pueden fijar el nitrógeno molecular disuelto en el agua. La característica más destacada de las cianobacterias, en términos de su repercusión sobre la salud pública, es que hay diversas especies que pueden producir toxinas.


Muchas cianobacterias producen toxinas potentes y cada toxina tiene propiedades específicas, y algunos de sus efectos perjudiciales específicos son daños hepáticos, neurotoxicidad y oncogenia. Algunos síntomas agudos notificados tras la exposición son: trastornos digestivos, fiebre e irritaciones de la piel, los oídos, los ojos, la garganta y el aparato respiratorio. Las cianobacterias no proliferan en el organismo humano, de modo que no son infecciosas. Las cianobacterias están ampliamente extendidas y están presentes en diversos tipos de medios, incluidos los suelos, el agua de mar y, de forma destacada, en cursos de agua dulce.


Algunas condiciones medioambientales, como la luz solar, las temperaturas cálidas, la baja turbulencia y las altas concentraciones de nutrientes, pueden favorecer su proliferación. Ésta puede ocasionar, en función de la especie, una coloración verdosa del agua por la alta densidad de células suspendidas, o, en algunos casos, la formación de capas superficiales de verdín. Estas acumulaciones de células pueden generar altas concentraciones de toxinas. La exposición a las toxinas por ingestión de agua de consumo, durante la práctica de actividades recreativas, al ducharse y, posiblemente, por el consumo de comprimidos de complementos alimenticios elaborados con algas, podría ser peligrosa para la salud.


El principal peligro de muchas de las cianotoxinas es la exposición repetida o crónica; no obstante, en algunos casos es más importante la toxicidad aguda. Han fallecido personas por el uso en diálisis renal de agua tratada inadecuadamente que contenía concentraciones altas de cianotoxinas. La exposición dérmica puede producir irritaciones de la piel y de las mucosas, así como reacciones alérgicas. En la mayoría de las aguas superficiales hay concentraciones pequeñas de cianobacterias, pero en condiciones ambientales propicias pueden producirse «floraciones» con una gran densidad de cianobacterias. La eutrofización (aumento del crecimiento biológico asociado a un aumento de la concentración de nutrientes) puede favorecer la aparición de floraciones de cianobacterias.



Coliformes Totales


Incluye una amplia variedad de bacilos aerobios y anaerobios facultativos, gramnegativos y no esporulantes capaces de proliferar en presencia de concentraciones relativamente altas de sales biliares fermentando la lactosa y produciendo ácido o aldehído en 24 h a 35–37°C. Escherichia coli y los coliformes termotolerantes son un subgrupo del grupo de los coliformes totales que pueden fermentar la lactosa a temperaturas más altas. Los coliformes totales producen, para fermentar la lactosa, la enzima β-galactosidasa. Tradicionalmente, se consideraba que las bacterias coliformes pertenecían a los géneros Escherichia, Citrobacter, Klebsiella y Enterobacter, pero el grupo es más heterogéneo e incluye otros géneros como Serratia y Hafnia.


El grupo de los coliformes totales incluye especies fecales y ambientales. El grupo de los coliformes totales incluye microorganismos que pueden sobrevivir y proliferar en el agua. Por consiguiente, no son útiles como índice de agentes patógenos fecales, pero pueden utilizarse como indicador de la eficacia de tratamientos y para evaluar la limpieza e integridad de sistemas de distribución y la posible presencia de biopelículas. No obstante, hay mejores indicadores para estos fines.  El análisis de los coliformes totales, como indicador de desinfección, es mucho más lento y menos fiable que la medición directa de la concentración residual de desinfectante. Además, los coliformes totales son mucho más sensibles a la desinfección que los protozoos y virus entéricos. El RHP detecta una gama más amplia de microorganismos y se considera generalmente un mejor indicador de la integridad y limpieza de los sistemas de distribución. 


Las bacterias pertenecientes al grupo de los coliformes totales (excluida E. coli) están presentes tanto en aguas residuales como en aguas naturales. Algunas de estas bacterias se excretan en las heces de personas y animales, pero muchos coliformes son heterótrofos y capaces de multiplicarse en suelos y medios acuáticos. Los coliformes totales pueden también sobrevivir y proliferar en sistemas de distribución de agua, sobre todo en presencia de biopelículas. Los coliformes totales se miden generalmente en muestras de 100 ml de agua. Existen diversos procedimientos relativamente sencillos basados en la producción de ácido a partir de la lactosa o en la producción de la enzima β-galactosidasa. Los procedimientos incluyen la filtración del agua con una membrana que después se incuba en medios selectivos a 35–37°C; transcurridas 24 h, se realiza un recuento de colonias. Otros métodos son los procedimientos de «número más probable» en los que se utilizan tubos de ensayo o placas de microvaloración y pruebas de presencia/ausencia (P/A).



Clostridium


Las bacterias del género Clostridium son bacilos grampositivos, anaerobios y sulfitorreductores. Producen esporas excepcionalmente resistentes a las condiciones desfavorables en medios acuáticos, incluidas la irradiación UV, los extremos de temperatura y pH, y los procesos de desinfección, como la cloración. La especie característica del género, C. perfringens, forma parte de la microflora intestinal normal de entre el 13 y el 35% de las personas y otros animales de sangre caliente, aunque este género también incluye otras especies cuyo origen no es exclusivamente fecal. Al igual que E. coli, C. perfringens no prolifera en la mayoría de los medios acuáticos, por lo que es un indicador de contaminación fecal muy específico. Dada la extraordinaria resistencia de las esporas de C. perfringens a los procesos de desinfección y a otras condiciones ambientales desfavorables, se ha propuesto esta especie como índice de la presencia de protozoos y virus entéricos en aguas de consumo tratadas.


C. perfringens también puede utilizarse como índice de contaminación fecal previa y, por lo tanto, indicar qué fuentes son susceptibles de contaminación intermitente. No obstante, no se recomienda el uso de C. perfringens para el monitoreo sistemático, ya es probable que la supervivencia excepcionalmente larga de sus esporas exceda con mucho la de los agentes patógenos entéricos, incluidos los virus y los protozoos. Las esporas de C. perfringens son más pequeñas que los quistes u ooquistes de los protozoos, por lo que pueden ser útiles como indicadores de la eficacia de los procesos de filtración. La existencia de concentraciones pequeñas de esporas de C. perfringens en algunas aguas de alimentación sugiere que su uso para el propósito mencionado quizá deba limitarse a la validación de procesos y no a su monitoreo sistemático. Clostridium perfringens y sus esporas están presentes prácticamente siempre en aguas residuales; no obstante, el microorganismo no prolifera en medios acuáticos.


Clostridium perfringens está presente con más frecuencia y en mayores concentraciones en las heces de algunos animales, como los perros, que en las heces humanas, y con menos frecuencia en las heces de muchos otros animales de sangre caliente. La cantidad excretada en las heces es, por lo general, substancialmente menor que la de E. coli. Las esporas y células vegetativas de C. perfringens suelen detectarse mediante técnicas de filtración con membrana y posterior incubación de las membranas en medios selectivos en condiciones estrictamente anaerobias. Estas técnicas de detección no son tan sencillas y baratas como las de otros indicadores, como E. coli o los enterococos intestinales.


La presencia de C. perfringens en el agua de consumo puede ser un índice de contaminación fecal intermitente, y debe impulsar la investigación de las posibles fuentes de contaminación. Los procesos de filtración diseñados para eliminar los protozoos o virus entéricos deberían eliminar también C. perfringens, por lo que la detección de este microorganismo en el agua inmediatamente después de su tratamiento debería impulsar la investigación del funcionamiento de la planta de filtración.





"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HABITO"

ARISTOTELES


LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.