lunes, 29 de febrero de 2016

NUEVA GUÍA PRACTICA del LABORATORIO MICROBIOLOGICO de AGUA y ALIMENTOS (I Parte)

“El médico del futuro no tratará el cuerpo humano con medicamentos, más bien curará y prevendrá las enfermedades con la nutrición" 
(Thomas Alva Edison)




NUEVA GUÍA PRACTICA del LABORATORIO MICROBIOLOGICO 
de AGUA y ALIMENTOS (I Parte)





Conceptos sobre Microbiología 

La Microbiología, el estudio de los organismos microscópicos, deriva de 3 palabras griegas: mikros (pequeño), bios (vida) y logos (ciencia) que conjuntamente significan el estudio de la vida microscópica. Para mucha gente la palabra microorganismo le trae a la mente un grupo de pequeñas criaturas que no se encuadran en ninguna de las categorías de la pregunta clásica: ¿es animal, vegetal o mineral? Los microorganismos son diminutos seres vivos que individualmente son demasiado pequeños como para verlos a simple vista. En este grupo se incluyen las bacterias, hongos (levaduras y hongos filamentosos), virus, protozoos y algas microscópicas.


Normalmente tendemos a asociar estos pequeños organismos con infecciones, enfermedades como el SIDA, o el deterioro de los alimentos. Sin embargo, la mayoría de los microorganismos contribuyen de una forma crucial en el bienestar de la Tierra ayudando a mantener el equilibrio de los organismos vivos y productos químicos en nuestro medio ambiente: Los microorganismos de agua dulce y salada son la base de la cadena alimentaria en océanos, lagos y ríos; los microorganismos del suelo destruyen los productos de desecho e incorporan el gas nitrógeno del aire en compuestos orgánicos, así como reciclan los productos químicos en el suelo, agua y aire; ciertas bacterias y algas juegan un papel importante en la fotosíntesis, que es un proceso que genera nutrientes y oxígeno a partir de luz solar y CO2 siendo un proceso crítico para el mantenimiento de la vida sobre la Tierra; los hombres y algunos animales dependen de las bacterias que habitan en sus intestinos para realizar la digestión y síntesis de algunas vitaminas como son la K y algunas del complejo B.



Los microorganismos también tienen aplicaciones industriales ya que se utilizan en la síntesis de productos químicos como son acetona, ácidos orgánicos, enzimas, alcohol y muchos medicamentos. El proceso de producción de acetona y butanol por bacterias fue descubierto en 1914 por Chaim Weizmann, un polaco que trabajaba en Inglaterra para Winston Churchill. Cuando estalló la primera guerra mundial en agosto de ese año, la producción de acetona era esencial en el proceso de fabricación de las municiones, por lo que el descubrimiento de Weizmann jugó un papel determinante en el desarrollo de la guerra. La industria alimentaria también usa microorganismos en la producción de vinagre, bebidas alcohólicas, aceitunas, mantequilla, queso, yogur y pan. Además, las bacterias y otros microorganismos ahora pueden ser manipulados para producir sustancias que ellos normalmente no sintetizan.




A través de esta técnica, llamada ingeniería genética, las bacterias pueden producir importantes sustancias terapéuticas como insulina, hormona de crecimiento humana e interferón.  Actualmente sabemos que los microorganismos se encuentran en todas partes; pero hace poco, antes de la invención del microscopio, los microorganismos eran desconocidos para los científicos. Miles de personas morían en las epidemias cuyas causas no se conocían. El deterioro de los alimentos no se podía controlar siempre y muchas familias enteras morían debido a que no existían vacunas y antibióticos disponibles para combatir las infecciones.





Aunque los microorganismos se originaron hace aproximadamente 4.000 millones de años, la microbiología es relativamente una ciencia joven. Los primeros microorganismos se observaron hace 300 años y sin embargo pasaron unos 200 años hasta que se reconoció su importancia. La microbiología surgió como ciencia tras el descubrimiento, gracias al perfeccionamiento del microscopio, de los microorganismos. El naturalista holandés Antonio van Leeuwenhoek fue el primero en describir, en 1683, estos organismos (a los que bautizó como “animáculos”), que observó con la ayuda de un microscopio construido por él mismo. Ya en 1546 Girolano Fracastoro había sugerido que las enfermedades podían deberse a organismos tan pequeños que no podían verse y que eran transmitidos de una persona a otra. Sin embargo, el descubrimiento de que las bacterias pueden actuar como agentes específicos de las enfermedades infecciosas en los animales fue realizado a través del estudio del carbunco, infección grave de los animales domésticos que es transmisible al hombre. La demostración concluyente de la causa bacteriana o etiología del carbunco la proporcionó en 1876 Roberto Koch, un médico rural alemán. Koch empezó a estudiar el mundo microbiano después de que su mujer le regalara por su 28 cumpleaños un microscopio. Seis años después Koch anunció al mundo que había encontrado la bacteria del carbunco (Bacillus anthracis). Posteriormente él y sus colaboradores descubrieron las bacterias que causan la tuberculosis y el cólera.


Esta serie de experimentos se ajustaban a los criterios necesarios para poder establecer la relación causal entre un organismo específico y una enfermedad específica. Estos criterios se conocen como los postulados de Koch:

1. El microorganismo debe estar presente en todos los casos de la enfermedad. 
2. El microorganismo debe ser aislado del hospedador enfermo y obtenerse en cultivo puro en el laboratorio. 
3. La enfermedad específica debe reproducirse cuando un cultivo puro del microorganismo se inocula a un hospedador susceptible sano. 
4. El microorganismo debe ser recuperable de nuevo a partir del hospedador inyectado experimentalmente.




Louis Pasteur fue un químico y biólogo francés que fundó la ciencia de la microbiología. Comenzó investigando los procesos de fermentación del vino y la cerveza y descubrió la existencia de las bacterias que interferían en este proceso. Aplicó sus conclusiones al estudio de la causa y el desarrollo de las enfermedades y demostró la teoría de los gérmenes como causantes de las mismas. También desarrolló vacunas que consiguieron salvar miles de vidas. Pasteur observó que en la fabricación de la cerveza y el vino, a veces los dos líquidos resultaban buenos y otras agrios. Decidió estudiar el proceso con el microscopio y descubrió que cuando la fermentación era normal participaban las pequeñas células de la levadura. En cambio, cuando resultaban agrios era porque en el proceso participaban organismos como las bacterias.



A finales del siglo XIX y comienzos del XX, diversos microbiólogos como el ruso Serguei Winogradsky, considerado el fundador de la ecología microbiana moderna, emprendieron las investigaciones sobre el metabolismo de las bacterias (estudios iniciados por Pasteur). Winogradsky estableció que las bacterias funcionan según dos modelos: la aerobiosis, que se basa en el consumo de oxígeno; y la anaerobiosis, que permite a las bacterias vivir en un ambiente desprovisto por completo de oxígeno. Winogradsky descubrió las bacterias quimiosintéticas, puso de manifiesto la participación de los microorganismos en el ciclo de la urea y fue uno de los primeros en estudiar las bacterias simbióticas.

El estudio de los virus se desarrolló especialmente en el primer tercio del siglo XX. En efecto, a pesar de que en el año 1905 varios microbiólogos habían demostrado que las enfermedades víricas conocidas se debían a agentes patógenos minúsculos y no a las toxinas, los virus siguieron siendo invisibles; y su naturaleza, desconocida, hasta la década de 1930. En 1935 el bioquímico estadounidense Wendell Stanley logró aislar y cristalizar un virus: el del mosaico del tabaco. En 1938 se observaron por primera vez los virus gracias a la invención del microscopio electrónico. Después, en las décadas de 1960 y 1970 se descubrieron numerosos virus y se determinaron sus características físicas y químicas.



Posteriormente, las investigaciones microbiológicas se sirvieron de diversas técnicas innovadoras, como el microscopio electrónico de barrido o las técnicas de secuenciación del ácido desoxirribonucleico (ADN). Gracias a todos estos avances, los microorganismos se clasificaron en función de su estructura molecular, incluyéndolos en tres reinos. De este modo, las bacterias forman el conjunto de los procariotas, es decir, organismos en los que el material genético, en forma de ADN, se encuentra libre en el citoplasma y no incluido en un núcleo: pertenecen al reino Móneras. Los restantes organismos unicelulares se clasifican como eucariotas (en los que el genoma está incluido en el núcleo celular). Entre estos eucariotas unicelulares se distinguen los que pertenecen al reino Protistas (grupo que engloba a los protozoos y algas unicelulares) y los que pertenecen al reino Hongos (las levaduras). Los virus constituyen un mundo aparte, ya que no pueden reproducirse por sí mismos, sino que necesitan parasitar una célula viva para completar su ciclo vital. Por último, el descubrimiento de los priones por Stanley Prusiner y su equipo en 1982 ha abierto una vía de estudio dentro de la microbiología. Los priones, simples proteínas desprovistas de material genético, suscitan numerosos interrogantes sobre su funcionamiento y modo de transmisión.

Un método fundamental para estudiar las bacterias es cultivarlas en un medio líquido o en la superficie de un medio sólido de agar. Los medios de cultivo contienen distintos nutrientes que van, desde azúcares simples hasta sustancias complejas como la sangre o el extracto de caldo de carne.


Para aislar o purificar una especie bacteriana a partir de una muestra formada por muchos tipos de bacterias, se siembra en un medio de cultivo sólido donde las células que se multiplican no cambian de localización; tras muchos ciclos reproductivos, cada bacteria individual genera por escisión binaria una colonia macroscópica compuesta por decenas de millones de células similares a la original. Si esta colonia individual se siembra a su vez en un nuevo medio crecerá como cultivo puro de un solo tipo de bacteria. Muchas especies bacterianas son tan parecidas morfológicamente que es imposible diferenciarlas sólo con el uso del microscopio; en este caso, para identificar cada tipo de bacteria, se estudian sus características bioquímicas sembrándolas en medios de cultivo especiales.  Así, algunos medios contienen un producto que inhibe el crecimiento de la mayoría de las especies bacterianas, pero no la de un tipo que deseamos averiguar si está presente. Otras veces el medio de cultivo contiene determinados azúcares especiales que sólo pueden utilizar algunas bacterias. En algunos medios se añaden indicadores de pH que cambian de color cuando uno de los nutrientes del medio es fermentado y se generan catabolitos ácidos. Si las bacterias son capaces de producir fermentación, generan gases que pueden ser apreciados cuando el cultivo se realiza en un tubo cerrado.



Con otros medios de cultivo se identifica si las bacterias producen determinadas enzimas que digieren los nutrientes: así, algunas bacterias con enzimas hemolíticas (capaces de romper los glóbulos rojos) producen hemólisis y cambios apreciables macroscópicamente en las placas de agar-sangre. Los diferentes medios y técnicas de cultivo son esenciales en el laboratorio de microbiología de un hospital, pues sirven para identificar las bacterias causantes de las enfermedades infecciosas y los antibióticos a los que son sensibles esas bacterias.

La esterilización es un proceso esencial en el cual se deben utilizar todos los instrumentos quirúrgicos, implantes y muchos otros dispositivos absolutamente esterilizados. La desecación y la congelación eliminan muchas especies de bacterias, pero otras simplemente permanecen en estado vegetativo. El calor seco o húmedo elimina todas las bacterias combinando adecuadamente factores como la temperatura a la que se someten y el tiempo de exposición. Se puede esterilizar por calor seco en estufas a más de 160 °C durante media hora, o por calor húmedo en autoclaves a 120 °C durante 20 minutos y a presión superior a la atmosférica. La ebullición a 100 °C no elimina todos los gérmenes patógenos (entre los que no sólo están incluidos las bacterias sino también virus y levaduras). Otro medio habitual de esterilización, utilizado para objetos no resistentes al calor, son los medios químicos: el ácido fénico, iniciador de la era de la antisepsia (véase Fenol), el ácido cianhídrico, el óxido de etileno, la clorhexidina, los derivados mercuriales, los derivados del yodo (especialmente la povidona yodada) y muchas otras sustancias. El alcohol etílico no produce esterilización completa. Otro medio de esterilización actual son las radiaciones ionizantes (beta, gamma).

 

La Pasteurización es un proceso de calentamiento de un líquido, en particular de la leche, hasta una temperatura que oscila entre 55 y 70 °C para destruir las bacterias perjudiciales, sin producir cambios materiales en la composición, en el sabor, o en el valor nutritivo del líquido. El proceso se llama así en honor del químico francés Louis Pasteur, quien lo ideó en 1865 con el fin de inhibir la fermentación del vino y de la leche. La leche se pasteuriza al calentarla a 63 °C durante 30 minutos, luego se enfría con rapidez, y se envasa a una temperatura de 10 °C. La cerveza y el vino se pasteurizan al ser calentados a unos 60° C durante unos 20 minutos; también se hace, según un método más reciente, calentando a 70° C durante 30 segundos y envasando en condiciones estériles. Los desinfectantes son una arma clave para protegernos  de los microorganismos ya que estos se encuentran en casi todas partes por eso los desinfectantes van destruyendo los microorganismos o impidiendo su desarrollo y asimismo protegen el área donde actúan durante un lapso de tiempo. Basado en los hallazgos del fisiólogo alemán Theodor Schwann y del bioquímico francés Louis Pasteur, Lister desinfectaba las heridas quirúrgicas y accidentales con una solución de ácido carbólico, y en cinco años redujo la tasa de mortalidad de las amputaciones importantes de un 45 por ciento a un 12 por ciento.  Los desinfectantes cumplen un papel muy importante en el campo de la salud ya que si no fuera por estos por una simple herida podrían amputar cualquiera  de nuestros miembros.

Los antisépticos, son agentes físicos o químicos que evitan la putrefacción, infección o cambios similares, de los alimentos y tejidos vivos, destruyendo los microorganismos o impidiendo su desarrollo.  Desde la antigüedad los alimentos se han conservado gracias al empleo de agentes antisépticos como el calor durante la cocción, la sal y el vinagre en la salazón y adobo, y el humo de la madera (que contiene creosota, un compuesto similar al ácido carbólico) en el ahumado de las carnes. En la actualidad, los principales agentes antisépticos en la conservación de los alimentos son el calor y el frío utilizados en procesos como el enlatado, la pasteurización y la refrigeración. La irradiación es otro medio de conservación de los alimentos.

  
a. CLASIFICACIÓN DE LOS MICROORGANISMOS

1) VIRUS

Los virus son entidades no celulares de muy pequeño tamaño (normalmente inferior al del más pequeño procariota), por lo que debe de recurrirse al microscopio electrónico para su visualización.  Son agentes infectivos de naturaleza obligadamente parasitaria intracelular, que necesitan su incorporación al protoplasma vivo para que su material genético sea replicado por medio de su asociación más o menos completa con las actividades celulares normales, y que pueden transmitirse de una célula a otra.  Cada tipo de virus consta de una sola clase de ácido nucleico (ADN o ARN, nunca ambos), con capacidad para codificar varias proteínas, algunas de las cuales pueden tener funciones enzimáticas, mientras que otras son estructurales, disponiéndose éstas en cada partícula viral alrededor del material genético formando una estructura regular (cápsida); en algunos virus existe, además, una envuelta externa de tipo membranoso, derivada en parte de la célula en la que se desarrolló el virión (bicapa lipídica procedente de membranas celulares) y en parte de origen viral (proteínas).




Todos los bacteriófagos (virus que parasitan bacterias) tienen un ciclo lítico, o infeccioso, en el que el virus, incapaz de replicarse por sí mismo, inyecta su material genético dentro de una bacteria. Utilizando las enzimas y los mecanismos de síntesis de proteínas del huésped, el virus puede reproducirse y volverse a encapsular, fabricando unas 100 nuevas copias antes de que la bacteria se destruya y estalle. Algunos bacteriófagos, sin embargo, se comportan de diferente forma cuando infectan a una bacteria.  El material genético que inyectan se integra dentro del ADN del huésped; se replica de manera pasiva con éste, y lo hereda la progenie bacteriana. En una de cada 100.000 de estas células lisogénicas, el ADN viral se activa de forma espontánea y comienza un nuevo ciclo lítico.  Los virus, al carecer de las enzimas y precursores metabólicos necesarios para su propia replicación, tienen que obtenerlos de la célula huésped que infectan. La replicación viral es un proceso que incluye varias síntesis separadas y el ensamblaje posterior de todos los componentes, para dar origen a nuevas partículas infecciosas. La replicación se inicia cuando el virus entra en la célula: las enzimas celulares eliminan la cubierta y el ADN o ARN viral se pone en contacto con los ribosomas, dirigiendo la síntesis de proteínas. El ácido nucleico del virus se autoduplica y, una vez que se sintetizan las subunidades proteicas que constituyen la cápsida, los componentes se ensamblan dando lugar a nuevos virus. Una única partícula viral puede originar una progenie de miles. Determinados virus se liberan destruyendo la célula infectada, y otros, sin embargo, salen de la célula sin destruirla por un proceso de exocitosis que aprovecha las propias membranas celulares. En algunos casos las infecciones son “silenciosas”, es decir, los virus se replican en el interior de la célula sin causar daño evidente.



Pueden clasificarse en tres grandes grupos, atendiendo al tipo de organismos que afectan: fitófagos, cuando atacan a las plantas, las que determinan multitud de enfermedades: zoófagos, cuando atacan a los animales, distinguiéndose entre estos los dermatropos, que afectan a la piel (viruela, herpes, sarampión), neumotropos, que afectan a las vías respiratorias (gripe, neumonitis), viscerotropos, que atacan a diversas vísceras (hepatitis víricas, etc.), etc. y los bacteriófagos, cuando atacan a los cultivos bacterianos, esta última categoría reviste gran interés, ya que ha permitido llevar a cabo una serie de experimentos que han conducido a dilucidar algunas de las muchas incógnitas en el campo de la genética molecular.
  

2) BACTERIAS

Una bacteria simplificada está formada por tres capas externas que envuelven las estructuras internas; la capa pegajosa protege la pared celular rígida, que a su vez cubre la membrana celular semipermeable. El flagelo es un medio de locomoción y los pelos que se extienden por fuera de la cápsula ayudan a la bacteria a sujetarse a las superficies. El material genético está contenido en el ADN que forma el nucleoide. Los ribosomas que flotan en el citoplasma intervienen en la síntesis de proteínas.  El material genético de la célula bacteriana está formado por una hebra doble de ADN circular. Muchas bacterias poseen también pequeñas moléculas de ADN circulares llamados plásmidos, que llevan información genética, pero, la mayoría de las veces, no resultan esenciales en la reproducción. Muchos de estos plásmidos pueden transferirse de una bacteria a otra mediante un mecanismo de intercambio genético denominado conjugación.



Otros mecanismos por los cuales la bacteria puede intercambiar información genética son la transducción, en la que se transfiere ADN por virus bacterianos (Bacteriófagos), y la transformación, en la que el ADN pasa al interior de la célula bacteriana directamente desde el medio. Las células bacterianas se dividen por fisión; el material genético se duplica y la bacteria se alarga, se estrecha por la mitad y tiene lugar la división completa formándose dos células hijas idénticas a la célula madre. Así, al igual que ocurre en los organismos superiores, una especie de bacteria origina al reproducirse sólo células de la misma especie. Algunas bacterias se dividen cada cierto tiempo (entre 20 y 40 minutos). En condiciones favorables, si se dividen una vez cada 30 minutos, transcurridas 15 horas, una sola célula habrá dado lugar a unos mil millones de descendientes. Estas agrupaciones, llamadas colonias, son observables a simple vista. En condiciones adversas, algunas bacterias pueden formar esporas, que son formas en estado latente de la célula que permiten a ésta resistir las condiciones extremas de temperatura y humedad.

La clasificación taxonómica más utilizada divide a las bacterias en cuatro grandes grupos según las características de la pared celular. La división Gracilicutes incluye a las bacterias con pared celular delgada del tipo Gram negativas; las bacterias de la división Firmicutes tienen paredes celulares gruesas del tipo Gram positivas; las de la Tenericutes carecen de pared celular y las de la cuarta división Mendosicutes tienen paredes celulares poco comunes, formadas por materiales distintos a los típicos peptidoglucanos bacterianos. Entre las Mendosicutes se encuentran las Arquebacterias, un grupo de organismos poco comunes, que incluyen a las bacterias metanogénicas, anaerobias estrictas, que producen metano a partir de dióxido de carbono e hidrógeno; las halobacterias, que necesitan para su crecimiento concentraciones elevadas de sal, y las termoacidófilas, que necesitan azufre y son muy termófilas.




Se ha discutido sobre la conveniencia de que las Arquebacterias se incluyeran en un reino aparte, ya que estudios bioquímicos recientes han mostrado que son tan diferentes de las otras bacterias como de los organismos eucariotas (con núcleo diferenciado englobado en una membrana). Estos cuatro grandes grupos de bacterias se subdividen además en unas 30 secciones numeradas, alguna de las cuales se dividen a su vez en órdenes, familias y géneros.


3) HONGOS

La mayoría de los hongos están constituidos por finas fibras que contienen protoplasma, llamadas hifas. Éstas a menudo están divididas por tabiques llamados septos. En cada hifa hay uno o dos núcleos y el protoplasma se mueve a través de un diminuto poro que ostenta el centro de cada septo. No obstante, hay un filo de hongos, que se asemejan a algas, cuyas hifas generalmente no tienen septos y los numerosos núcleos están esparcidos por todo el protoplasma. Las hifas crecen por alargamiento de las puntas y también por ramificación.  La proliferación de hifas, resultante de este crecimiento, se llama micelio. Cuando el micelio se desarrolla puede llegar a formar grandes cuerpos fructíferos, tales como las setas. Otros tipos de enormes estructuras de hifas permiten a algunos hongos sobrevivir en condiciones difíciles o ampliar sus fuentes nutricionales. Las fibras, a modo de cuerdas, del micelio de la armilaria color de miel (Armillaria mellea), facilitan la propagación de esta especie de un árbol a otro. Ciertos hongos forman masas de micelio resistentes, con forma más o menos esférica, llamadas esclerocios. Éstos pueden ser pequeños como granos de arena, o grandes como melones.



La mayoría de los hongos se reproducen por esporas, diminutas partículas de protoplasma rodeado de pared celular. El champiñón silvestre puede formar doce mil millones de esporas en su cuerpo fructífero; así mismo, el pedo o cuesco de lobo gigante puede producir varios billones. Las esporas se forman de dos maneras. En el primer proceso, las esporas se originan después de la unión de dos o más núcleos, lo que ocurre dentro de una o de varias células especializadas.  Estas esporas, que tienen características diferentes, heredadas de las distintas combinaciones de genes de sus progenitores, suelen germinar en el interior de las hifas. Los cuatro tipos de esporas que se producen de esta manera (oosporas, zigosporas, ascosporas y basidiosporas) definen los cuatro grupos principales de hongos.  Las oosporas se forman por la unión de una célula macho y otra hembra; las zigosporas se forman al combinarse dos células sexuales similares entre sí.

Las ascosporas, que suelen disponerse en grupos de ocho unidades, están contenidas en unas bolsas llamadas ascas. Las basidiosporas, por su parte, se reúnen en conjuntos de cuatro unidades, dentro de unas estructuras con forma de maza llamadas basidios.  A pesar de que en muchos textos se emplean sistemas de clasificación relativamente complicados, los micólogos utilizan por lo común un sistema sencillo, que tiene la ventaja de ser cómodo de usar. Según este sistema, los cuatro filos principales son: Oomicetes, Zigomicetes, Ascomicetes y Basidiomicetes y sus respectivos individuos forman oosporas, zigosporas, ascosporas y basidiosporas. Una gran variedad de especies se colocan, de forma arbitraria, en un quinto filo: Deuteromicetes, también llamados hongos imperfectos.  Se incluyen en este grupo aquellos hongos en los que sólo se conocen procesos de multiplicación vegetativa. Sin embargo, la mayoría de esas especies están emparentadas con los ascomicetes.




4) PROTOZOOS

Los protozoos se incluyen en el reino Protistas, junto con otros organismos unicelulares cuyo núcleo celular está rodeado de una membrana. Los protozoos no tienen estructuras internas especializadas a modo de órganos o, si las tienen, están muy poco diferenciadas. Entre los protozoos se suelen admitir varios grupos: los flagelados del grupo de los Zoomastiginos, con muchas especies que viven como parásitos de plantas y de animales; los ameboides del grupo Sarcodinos, que incluyen a los Foraminíferos y Radiolarios, y que son componentes importantes del plancton; los Cilióforos, que son ciliados, con diversos representantes que poseen estructuras especializadas que recuerdan a la boca y al ano de los organismos superiores; los Cnidosporidios, parásitos de invertebrados, de peces y de algunos reptiles y anfibios, y los Esporozoos, con diversas especies parásitas de animales y también de seres humanos. Se conocen más de veinte mil especies de protozoos, que incluyen organismos tan conocidos como los paramecios y las amebas.


Muchas especies viven en hábitats acuáticos como océanos, lagos, ríos y charcas. Su tamaño varía desde 2 hasta 70 micrómetros. Los protozoos se alimentan de bacterias, productos de desecho de otros organismos, algas y otros protozoos.  Muchas especies son capaces de moverse utilizando diversos mecanismos: flagelos, estructuras propulsoras con forma de látigo; cilios de aspecto piloso, o por medio de un movimiento ameboide, un tipo de locomoción que implica la formación de seudópodos (extensiones a modo de pie).


b. ALIMENTOS y BACTERIAS

Hay varios mecanismos empleados para proteger a los alimentos contra los microbios y otros agentes responsables de su deterioro para permitir su futuro consumo. Los alimentos en conserva deben mantener un aspecto, sabor y textura apetitosos así como su valor nutritivo original. Hay muchos agentes que pueden destruir las peculiaridades sanas de la comida fresca. Los microorganismos, como las bacterias y los hongos, estropean los alimentos con rapidez. Las enzimas, que están presentes en todos los alimentos frescos, son sustancias catalizadoras que favorecen la degradación y los cambios químicos que afectan, en especial, la textura y el sabor.  El oxígeno atmosférico puede reaccionar con componentes de los alimentos, que se pueden volver rancios o cambiar su color natural. Igualmente dañinas resultan las plagas de insectos y roedores, que son responsables de enormes pérdidas en las reservas de alimentos.  No hay ningún método de conservación que ofrezca protección frente a todos los riesgos posibles durante un periodo ilimitado de tiempo. Los alimentos enlatados almacenados en la Antártida cerca del polo sur, por ejemplo, seguían siendo comestibles al cabo de 50 años, pero esta conservación a largo plazo no puede producirse en el cálido clima de los trópicos. Además del enlatado y la congelación, existen otros métodos tradicionales de conservación como el secado, la salazón y el ahumado. La desecación por congelación o liofilización es un método más reciente.


Entre las nuevas técnicas experimentales se encuentran el uso de antibióticos y la exposición de los alimentos a la radiación nuclear. La congelación conserva los alimentos impidiendo la multiplicación de los microorganismos. Dado que el proceso no destruye a todos los tipos de bacterias, aquellos que sobreviven se reaniman en la comida al descongelarse y a menudo se multiplican mucho más rápido que antes de la congelación. Para más información sobre este proceso.  La congelación impide la multiplicación de los microorganismos (bacterias y hongos microscópicos). Por el contrario, las enzimas, cuya actividad degrada los alimentos, sí se mantienen activas en condiciones de congelación, aunque su actividad es mucho más lenta. Por eso las legumbres frescas suelen blanquearse o hervirse antes de congelarlas, con el fin de inactivar estas sustancias e impedir que el sabor se degrade.   También se ha propuesto blanquear el pescado para destruir las bacterias resistentes al frío que viven en las escamas. Los métodos de congelación de los productos cárnicos dependen del tipo de carne y del corte. El cerdo, por ejemplo, se congela justo después del sacrificio, mientras que el buey se cuelga durante varios días dentro de una cámara fría para hacerlo más tierno.  Existen una serie de características que comparten todos los microorganismos y que suponen ciertas ventajas para su uso en la industria. la más fundamental, el pequeño tamaño de la célula microbiana y su correspondiente alta relación de superficie a volumen. Esto facilita el rápido transporte de nutrientes al interior de la célula y permite, por consiguiente, una elevada tasa metabólica. Así, la tasa de producción de proteína en las levaduras es varios órdenes de magnitud superior que en la planta de soja, que, a su vez, es 10 veces más alta que en el ganado.




Esta velocidad de biosíntesis microbiana extremadamente alta permite que algunos microorganismos se reproduzcan en tan solo 20 minutos (Escherichia coli). Los ambientes capaces de albergar vida microbiana son muy variados. Se han encontrado especies que viven a temperaturas comprendidas entre el punto de congelación del agua y el punto de ebullición, en agua salada y dulce, en presencia y en ausencia de aire. Algunos han desarrollado ciclos de vida que incluyen una fase de latencia en respuesta a la falta de nutrientes: en forma de esporas permanecen inactivos durante años hasta que el medio ambiente, más favorable, permita el desarrollo de las células. Los microorganismos se hallan capacitados para acometer una extensa gama de reacciones metabólicas y adaptarse así a muchas fuentes de nutrición. Versatilidad que hace posible el que las fermentaciones industriales se basen en nutrientes baratos. Un microorganismo de uso industrial debe producir la sustancia de interés; debe estar disponible en cultivo puro; debe ser genéticamente estable y debe crecer en cultivos a gran escala.  Otra característica importante es que el microorganismo industrial crezca rápidamente y produzca el producto deseado en un corto período de tiempo. El microorganismo debe también crecer en un relativamente barato medio de cultivo disponible en grandes cantidades. Además, un microorganismo industrial no debe ser patógeno para el hombre o para los animales o plantas.

Otro requisito importante es la facilidad de separar las células microbianas del medio de cultivo; la centrifugación es dificultosa o cara a gran escala. Los microorganismos industriales más favorables para esto son aquellos de mayor tamaño celular (hongos filamentosos, levaduras y bacterias filamentosas) ya que estas células sedimentan más fácilmente que las bacterias unicelulares e incluso son más fáciles de filtrar.  Los microorganismos que sintetizan productos útiles para el hombre representan, como máximo, unos pocos centenares de especies de entre las más de 100.000 descriptas en la Naturaleza. Los pocos que se han encontrado con utilidad industrial son apreciados por elaborar alguna sustancia que no se puede obtener de manera fácil o barata por otros métodos.



Las levaduras se vienen utilizando desde hace miles de años para la fabricación de pan y bebidas alcohólicas. La levadura que sin duda fue la primera y aún hoy en día sigue siendo la más utilizada por el hombre es Saccharomyces cerevisiae de la que se emplean diferentes cepas para la fabricación de cerveza, vino, sake, pan y alcoholes industriales. Kluyveromyces fragilis es una especie fermentadora de la lactosa que se explota en pequeña escala para la producción de alcohol a partir del suero de la leche.  Yarrowia lipolytica es una fuente industrial de ácido cítrico. Trichosporum cutaneum desempeña un importante papel en los sistemas de digestión aeróbica de aguas residuales debido a su enorme capacidad de oxidación de compuestos orgánicos, incluidos algunos que son tóxicos para otras levaduras y hongos, como los derivados fenólicos.

Los hongos tienen una gran importancia económica, no tan sólo por su utilidad, sino también por el daño que pueden causar. Los hongos son responsables de la degradación de gran parte de la materia orgánica de la Tierra, una actividad enormemente beneficiosa ya que permite el reciclaje de la materia viva. Por otro lado, los hongos causan gran cantidad de enfermedades en plantas y animales y pueden destruir alimentos y materiales de los que depende el hombre. Los efectos perjudiciales de los hongos están contrarrestados por su utilización industrial. Los hongos son la base de muchas fermentaciones como la combinación de soja, habichuelas, arroz y cebada que dan lugar a los alimentos orientales miso, shoyu y tempeh. Los hongos son también la fuente de muchos enzimas comerciales (amilasas, proteasas, pectinasas), ácidos orgánicos (cítrico, láctico), antibióticos (penicilina), quesos especiales (Camembert, Roquefort) y, evidentemente, de las setas. 


En contra de la idea de que todos los microorganismos son dañinos, los yogures y los quesos son ejemplos de alimentos a los que se añaden éstos para, por ejemplo, agriar la leche y producir yogur, u obtener la cubierta blanca característica del queso Brie o el color azul del queso Roquefort. De un tamaño más o menos similar es el sector de frutas y verduras, en el que los productos pueden no haber sufrido ninguna alteración o estar enlatados, congelados, refrigerados o fritos.  Actualmente, existen muchos otros productos químicos que se obtienen por fermentación (un término técnicamente restringido a los procesos que ocurren en ausencia de aire, como la producción de alcohol por levaduras, aunque este término a menudo se utiliza de forma más amplia). Estos productos incluyen el ácido oxálico utilizado en tintes y colorantes, el ácido propenoico (ácido acrílico) utilizado como intermediario en la producción de plásticos, o el ácido láctico empleado para acidificar alimentos y como anticongelante. Los microorganismos se han usado, así mismo, en la obtención de diferentes enzimas utilizadas para aplicaciones tan diversas, como la eliminación de manchas en los tejidos (gracias a la incorporación de enzimas en los detergentes que atacan proteínas y ácidos grasos), o la conversión de harina de maíz en sirope (utilizado para endulzar refrescos, galletas y pasteles).









"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HABITO"

ARISTOTELES





LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.

lunes, 15 de febrero de 2016

NUEVA GUÍA PRACTICA del LABORATORIO MICROBIOLOGICO de AGUA y ALIMENTOS (Introducción)

“El médico del futuro no tratará el cuerpo humano con medicamentos, más bien curará y prevendrá las enfermedades con la nutrición" 
(Thomas Alva Edison)




NUEVA GUÍA PRACTICA del LABORATORIO MICROBIOLOGICO 
de AGUA y ALIMENTOS (Introducción)




(AGRADECIMIENTO ESPECIAL A LA FOTOGRAFIA ANTERIOR A:  www.biotalde.com)

Desde hace más de 35 años, me he dedicado de lleno a éste apasionante y siempre cambiante mundo de la Microbiología. La auto preparación ha jalonado siempre la melga por la que me ha tocado avanzar, pero el norte fue realzar y jerarquizar el cargo de Jefe del Servicio de Bromatología con el cual se nos revestía al llegar a un Hospital Militar o a un Instituto de Formación Militar. Esta obra hasta ahora incunable, llevó más de  diez años de preparación, investigación bibliográfica y experiencias personales que hoy se ven plasmadas en un texto básico de consulta para el microbiólogo de agua y alimentos y que deseo compartirla nuevamente con los lectores de mi Blog personal. Ver a la Bromatología más allá de lo legal y del simple examen macroscópico y organoléptico, ha sido mi enriquecedora experiencia.


Estos logros, tuvieron sin embargo su bautismo de fuego fuera de nuestra Córdoba (Argentina) y en un medio inhóspito y desfavorable en grado sumo, en el marco además de una catástrofe natural como el Huracán JEANNE, que nos golpeara de lleno en la lejana Gonaïves (República de Haití) en septiembre de 2004, bajo el mandato de las Naciones Unidas. Un simple análisis macroscópico y organoléptico no nos pueden dar una idea acabada de la potencial contaminación del alimento o del agua; para ello está la Microbiología, quien se encargará de determinar cuál es el patógeno que puede desencadenar una ETA (Enfermedad Transmitida por Alimentos). He aquí un pequeño grano de arena para ayudar al colega que recién comienza a transitar por el laboratorio, o para ser una herramienta más en el bagaje intelectual del especialista. Esta Guía Práctica de Microbiología, viene a tratar de llenar un vacío que me tocó siempre encontrar en mis quehaceres como Médico Veterinario Militar en los Laboratorios de Bromatología. ¿Que éste ejercicio literario está lleno de defectos y errores?, quién lo duda?! Propongámonos criticar construyendo y de ésa manera todos saldremos con una enseñanza.





La Coloración o Tinción de Gram





Esta tinción fue desarrollada empíricamente por el médico danés Hans Christian Joachim Gram en 1884. A pesar del tiempo transcurrido, la tinción apenas se ha modificado y es uno de los primeros pasos que se realiza para cualquier identificación bacteriana. La técnica es capaz de diferenciar dos grandes grupos de eubacterias: Gram positivas (+) y Gram negativas (-).  En el estudio de la ciencia que nos ocupa, la microbiología, es fundamental la observación de los microorganismos. Esta observación se hace necesaria para su clasificación e identificación. Para ello se usa el microscopio tanto óptico como electrónico, y en sus diversas variantes (microscopio de rayos UV, electrónico de barrido, de contraste de fase, de campo oscuro…). Nosotros abordaremos únicamente el microscopio óptico compuesto de dos lentes (condensador y objetivo).  Un microscopio suele tener cuatro objetivos, pero en microbiología se usa preferentemente el objetivo de inmersión, aunque para visualizar una preparación siempre se recomienda empezar por el objetivo de X10 y una vez localizada la muestra ir subiendo poco a poco el nivel de aumentos.





Al microscopio óptico hay dos formas de ver las preparaciones:

1.  Preparaciones en fresco con el objetivo seco. Tiene el inconveniente de que las preparaciones son muy difíciles de ver debido al poco contraste del medio que les rodea.

2.  Preparaciones fijadas y teñidas con el objetivo de inmersión. Se matan las bacterias, pero son más visibles y su contraste es superior y de mayor calidad.

Entre los tipos de preparaciones del segundo tipo, hay un método de tinción que se usa universalmente para distinguir a las bacterias en dos grandes grupos: se trata de la Coloración o Tinción de Gram.  Es una tinción diferencial que basa su distinción en la estructura diferente de la pared bacteriana de las bacteria Gram (+) (pared más gruesa, y una sola capa de peptidoglucano) y de las Gram (-) (pared más delgada y dividida en dos partes). Para explicar el mecanismo de la tinción de Gram se han propuesto varias hipótesis fundadas en la naturaleza química de las paredes celulares de los microorganismos. Los dos grupos bacterianos que distingue esta técnica difieren en el color con el que finalmente aparecen. Las bacterias Gram (+) se teñirán de azul por el cristal violeta y no perderán esta coloración durante los pasos sucesivos. Las bacterias Gram (-) perderán la coloración inicial del cristal violeta en los siguientes pasos y se teñirán de rosa debido a la safranina.



La diferencia está determinada por la composición de su envoltura celular. Las bacterias Gram (+) poseen una malla de peptidoglicano en su parte más externa, mientras que las Gram (-), recubriendo una fina capa de peptidoglicano, presentan una membrana externa que envuelve toda la célula. Una de las precauciones al realizar esta tinción es la de trabajar con cultivos en fase exponencial. De lo contrario se pueden obtener resultados falsos. Por ejemplo, las bacterias Gram (+) en fase estacionaria pueden aparecer como Gram (-).  Los tiempos de exposición a los colorantes son orientativos. Cada vez que se prepara la batería de colorantes para realizar la tinción de Gram presentan algunas diferencias respecto a los preparados en otro momento, por lo que puede ser necesario ajustar los tiempos. En un laboratorio de Microbiología, cada vez que se preparan los colorantes, se suelen hacer pruebas con cultivos patrón de los dos tipos (Gram (+) y Gram (-)) para ajustar así los tiempos y tener la certeza de que el resultado de todas las tinciones que se hagan mientras duren esos colorantes son fiables. Otra posibilidad es adquirir el equipo completo de colorantes ya preparados, pero es mucho más caro.




Los pasos más estandarizados a nivel mundial, son los siguientes:

a. Extensión: En un porta bien limpio (con alcohol, papel de filtro y flameado) se coloca una gota de agua destilada a la que con el asa de siembra, previamente esterilizada a la llama, se lleva una pequeña cantidad de suspensión de bacterias o, en su caso, de una colonia. Con el asa se extiende la gota y las bacterias sobre el porta y se fija la extensión por el calor, calentando suavemente a la llama del mechero hasta que se seque. La figura detalla a continuación el procedimiento descrito.



b. Coloración:
a) 1 minuto en Cristal violeta de Hucker (colorante inicial)
b) se lava con agua destilada
c) 1 minuto en solución de Lugol (mordiente)
d) se decolora con Alcohol de 95º (decolorante)
e) se lava con agua destilada
f) 1 minuto en Fucsina o Safranina (colorante de contraste)
g) se lava con agua corriente
h) se seca suavemente y sin frotar con papel de filtro



Una vez que la preparación está totalmente seca, poner una gota muy pequeña de aceite de cedro y observar al microscopio con el objetivo de inmersión. A continuación, brindaremos algunos matices de los colorantes empleados:

1.  Colorante básico Cristal Violeta o Violeta de Genciana: Es el primer colorante que se echa sobre el frotis previamente preparado. Es un colorante selectivo que tiñe a todos los microorganismos cargados negativamente. Se deja actuar durante un minuto y se lava con agua a continuación.
2.  Solución de Lugol. Producto compuesto de yodo y yoduro potásico. Es un mordiente, que intensifica al Cristal Violeta haciendo que precipite. Fija las tinciones y aumenta la afinidad entre el colorante y las células. Los mordientes empleados suelen ser sales metálicas, ácidos o bases Se deja actuar un minuto y se lava con alcohol, el tiempo justo para que no se arrastre el colorante del todo.
3.  Alcohol 96º. El alcohol retira el colorante de las Gram (-) debido a su diferente estructura de la pared celular (tamaño de los poros). A veces se usa otro agente decolorante o disolvente orgánico como alcohol-acetona (1:1).
4.  Safranina o Fucsina: Colorantes básicos diferenciadores. Tiñen a las bacterias Gram (-). Se dejan actuar treinta segundos y se lavan con agua. Siempre se añade ésta contratinción con fucsina o eosina para teñir las bacterias decoloradas de color rojo y hacerlas más visibles. Se denominan bacterias Gram positivas a aquellas que retienen la tinción azul y bacterias Gram negativas a las que quedan decoloradas. Algunas bacterias presentan capacidad variable de tinción de Gram y se llaman Gram variables. Bacterias Gram positivas típicas son los estafilococos que producen forúnculos; Gram negativas representativas son la Escherichia coli de la flora intestinal o los bacilos de la tos ferina; Gram variables son los bacilos de Koch de la tuberculosis

Como puede verse en definitiva y una vez finalizada la tinción, las bacterias Gram (-) estarán teñidas de un color rosáceo, y las Gram (+) de un color violeta. Esto sirve para diferenciarlas claramente al microscopio óptico.



Debe utilizarse el objetivo de inmersión. Se coloca una gota de aceite de cedro sobre la preparación, se enfoca, preferentemente, con el micrométrico. Después de utilizar el objetivo de inmersión debe limpiarse con xilol.





LA ESTERILIZACIÓN EN EL LABORATORIO MICROBIOLOGICO 





Desde hace mucho tiempo es un reto el control de enfermedades infecciosas por destrucción, disminución de su número o inhibición de microorganismos. Se puede llevar a cabo con diferentes métodos en función del lugar a aplicar y el grado de erradicación microbiana que se pretende conseguir. Por esto es conveniente definir algunos conceptos:

· Esterilización: proceso físico o químico que destruye toda forma de vida de vida microbiana, incluidas las esporas.
· Desinfección: tiene por objeto la destrucción de microorganismos mediante agentes de naturaleza química (desinfectantes), con el fin de disminuir el número de formas vegetativas a niveles mínimos.
· Desinfectante: es la sustancia química que inhibe o destruye microorganismos al aplicarla sobre material inerte sin alterarlo significativamente.
· Asepsia: término que se aplica a los procedimientos utilizados para prevenir que los microorganismos progresen en un medio determinado (quirófano, laboratorio. etc.)


· Antisépticos: son agentes desinfectantes que se utilizan sobre superficies corporales con el fin de reducir la cantidad de flora normal y de contaminantes microbianos de carácter patógeno. Tienen un menor grado de toxicidad que los desinfectantes y generalmente menor grado de actividad. Determinados preparados pueden utilizarse como antisépticos o como desinfectantes indistintamente, pero a diferentes concentraciones en cada caso.

· Antimicrobianos: son sustancias químicas producidas por microorganismos o sintetizadas químicamente que a bajas concentraciones son capaces de inhibir e incluso de destruir microorganismos sin producir efectos tóxico en el huésped.

Los métodos de esterilización más importantes son:

Físicos

a. Flameado: es un procedimiento simple y eficaz, consiste en la exposición de un objeto a efecto de la llama hasta la incandescencia. Se esteriliza de esta forma, p. ej. ansas de cultivo de siembra.
b. Incineración: es el mejor sistema para esterilizar todas aquellos productos en los que no
importe su destrucción, p. ej. material biológico
c. Estufa: calor seco a alta temperatura, 20 minutos durante 180º, 60 minutos a 160º, siendo suficiente la esterilización durante 60 minutos a 100-140º, se lo utiliza para esterilizar material de vidrio debidamente envuelto en papel, metal. etc.
d. Autoclave de Chamberland: La esterilización con calor húmedo (vapor de agua) es mucho más rápida y eficaz que el calor seco debido a que las moléculas de agua desnaturalizan las proteínas de forma irreversible mediante rotura de los uniones H entre los grupos peptídicos a temperaturas relativamente bajas. 

Consiste en una cámara en la que el aire puede ser sustituído por vapor de agua sometida a presión. Se opera a 121ºC y 1 atm. de presión durante 20 minutos. De esta forma se consigue destruir todas las formas vegetativas y esporas. Se lo utiliza para esterilizar todo material resistente a esa temperatura y es muy utilizado para la esterilización de medios de cultivo.





e. Tindalización: (esterilización intermitente) consiste en someter el producto a calentamientos intermitentes entre 56 y 100ºC durante 30 minutos con lo que se asegura
destruir las formas vegetativas. En los intervalos se mantiene a temperatura ambiente o a 37ºC, las esporas germinan y las bacterias resultantes se hacen más sensibles al calentamiento posterior.



Radiaciones

a. Luz UV: es absorbida a una longitud de onda de 240 a 280 nm por ácidos nucleicos
causando daños genéticos alterando las bases. Se la utiliza en la preparación de vacunas,
cabinas de seguridad biológica, lugares de trabajo como mesadas de laboratorios, etc.
b. Radiaciones ionizantes: actúan lesionando ácidos nucleicos. Se la utiliza sobre todo en
procesos industriales para esterilizar dispositivos quirúrgicos, guantes, jeringas, etc.

Agentes Químicos

Los agentes químicos como el óxido e etileno, formaldehído o glutaraldehído reaccionan con gran facilidad con diferentes grupos funcionales de los ácidos nucleicos y proteínas alquilando éstos radicales esenciales.

a) Óxido de etileno
Es un gas inflamable y potencialmente explosivo, muy penetrante que incativa microorganismos sustituyendo átomos de hidrógeno lábiles por otros grupos como hidroxilos, carboxilos, etc. El material se expone a esterilizar a un 5-10% de óxido de etileno en dióxido de carbono a 50-60º en condiciones de humedad controlada durante 4 a 6 horas. Es necesario someterlo después a un período de aireación debido a su carácter mutagénico. Es un agente efectivo en la esterilización de material termolábil como prótesis, catéteres, etc.




b) Formol o formaldehído
Es un gas fácilmente soluble en agua que se utiliza al 40% (formalina). Usado en forma gaseosa y en cámara cerrada se emplea en la esterilización hospitalaria y en la industria farmacéutica. También es muy utilizado como desinfectante ambiental de salas altamente contaminadas que una vez tratadas deben airearse.

c) Glutaraldehído
Se emplea sumergiendo el material limpio en una solución al 2%, se emplea sobre todo en la esterilización de instrumentos ópticos y los utilizados en terapia respiratoria. La actividad de los compuestos derivados de metales pesados (como plata, mercurio, etc.,) se debe a la formación de sales que se disocian con dificultad de los grupos sulfidrilos de las proteínas.

d) Nitrato de plata y derivados argénticos
Son buenos bactericidas. El nitrato de plata se ha utilizado en el tratamiento de quemaduras en soluciones al 0,5% y en la profilaxis de la oftalmia neonatorum por Neisseria gonorrhoeae.

e) Derivados mercuriales: El más utilizado como desinfectante de la piel es el mercuriocromo, no es tóxico y sigue siendo activo en presencia de materia orgánica.

f) Agua oxigenada (peróxido de hidrógeno): Es un agente oxidante de efecto fugaz por ser
descompuesto por las catalasas de los tejidos.




g) Permanganato de potasio: Agente oxidante que se inactiva en presencia de materia orgánica. Es poco utilizado. En dermatología es utilizado por su propiedad antifúngica.

h) Derivados clorados: Se inactivan en presencia de materia orgánica. El cloro y derivados son agentes oxidantes muy usados en la potabilización del agua en forma de cloro gaseoso en grandes establecimientos, y en forma de hipoclorito es utilizado para descartar material biológico (sangre, suero, etc.) La cloramina es un antiséptico menos potente que el hipoclorito, de acción más lenta pero mejor tolerada en la aplicación tópica.

i) Derivados yodados: Son agentes oxidantes que se usan en forma de solución acuosa,
combinándolos con detergentes o sustancias orgánicas. Los yodoformos son compuestos que se liberan progresivamente. El Yodo se encuentra en la polivinilpirrolidona (povidona yodada). Existen también soluciones alcohólicas.

j) Alcoholes: Actúan desnaturalizando proteínas. Su acción es rápida pero se evaporan con
facilidad. El alcohol etílico se utiliza en antisepsia a una concentración del 70%, a esta
concentración se reduce más la tensión superficial de la célula bacteriana facilitando el proceso de desnaturalización.

k) Fenoles: Actúan precipitando proteínas. El hexaclorofeno y el fenol no se emplean por su
toxicidad. Otros derivados fenólicos son los cresoles, los que unidos a jabones originan
compuestos estables.

l) Clorohexidina: Es un derivado fenólico que actúa alterando la permeabilidad de la membrana celular bacteriana. Tiene inactivación rápida y es bien tolerado por la piel. Se emplea mucho en hospitales en el lavado de la superficie cutánea en forma de solución (acuosa o alcohólica) o asociada a detergentes no iónicos.

ll) Detergentes aniónicos: Actúan desorganizando las membranas citoplasmáticas. Tienen escaso poder bacteriostático. Se pueden mejorar combinándolos con desinfectantes u otras sustancias tensoactivas como laurilsulfato.

m) Detergentes cationicos: Tienen acción antiséptica, se inactivan en contacto con jabón, algodón y materia orgánica. Son poco usados.

n) Glicoles: Propilenglicol y Etilenglicol, se aplican por medio de unos aparatos llamados
glicosatos o en forma de aerosoles para desinfección ambiental.



Los productos descritos como estériles deben satisfacer el ensayo de esterilidad. Estos productos se esterilizan en su recipiente definitivo, excepto en los casos en que el producto, a causa de su naturaleza, no pueda ser sometido al correspondiente tratamiento en su recipiente. Los productos que no pueden ser esterilizados en su recipiente definitivo se preparan por métodos y en condiciones determinadas para evitar contaminación microbiana después de someter a un proceso de esterilización adecuada todos sus componentes, si es posible, así como los recipientes y cierres. La eficacia de los procedimientos de esterilización está notablemente influenciada por el grado inicial de contaminación microbiana, debiéndose observar las precauciones siguientes:

— Las condiciones de trabajo deben controlarse de forma adecuada tratando de evitar la
introducción y crecimiento de microorganismos,
— El nivel de contaminación microbiana de las materias primas, del equipo y de todo el
material utilizado debe ser el menor posible antes de la esterilización.
— Debe efectuarse un control microbiológico de las materias primas susceptibles de
presentar un nivel elevado de contaminación a causa de su naturaleza o de su modo de
preparación.
— Cada proceso concreto de esterilización debe ser validado.
— Los procedimientos y las precauciones empleadas deben ser tales que se alcance en el
producto final un nivel teórico de contaminación, correspondiente a no más de 1 microorganismo vivo por 1 x 10 exp6 unidades sometidas a la esterilización.

Para todos los métodos de esterilización, las condiciones críticas de la operación deben controlarse de forma que aseguren que todas las unidades del lote hayan sido sometidas, al menos, a las condiciones mínimas de esterilización. La duración del tratamiento se mide a partir del momento en el que se consiguen las condiciones prescritas para la esterilización en el conjunto de productos a esterilizar.





Esterilización por vapor: En el autoclave, la temperatura y la presión de vapor deben medirse independientemente con una precisión superior a ± 2° C y a ± 10 KPa (0,1 atm) respectivamente; preferentemente se debe obtener un registro continuo de estos parámetros. La temperatura debe medirse en la parte más fría del autoclave que está situada generalmente cerca de la conducción de salida del vapor. La temperatura debe medirse también, preferentemente, en dos o más recipientes, situados en diferentes lugares del autoclave, de forma que las temperaturas medidas representen en lo que cabe los valores extremos de todos los recipientes del lote.  Cuando es difícil que en un autoclave se consiga rápidamente el desplazamiento del aire por el vapor (por ejemplo al tratar materiales porosos, textiles, utensilios de varios tipos), es necesario evacuar el aire del autoclave antes de la admisión del vapor. La eficacia del procedimiento puede ser confirmado por la utilización de indicadores biológicos apropiados.

Esterilización por calor seco: El horno debe normalmente estar provisto de un sistema de circulación de aire forzado y llenarse de forma que se alcance una distribución uniforme de la temperatura en toda la carga. La temperatura se debe medir y, preferentemente, registrar en al menos dos lugares en los que haya menos probabilidades de alcanzar las condiciones de esterilización. La eficacia del procedimiento puede confirmarse utilizando indicadores biológicos adecuados.


Esterilización por radiaciones: Durante el procedimiento de esterilización, la dosis de radiación debe ser controlada regularmente. Este control implica procedimientos dosimétricos, independientes de la tasa de radiación, que permitan una medida cuantitativa de la dosis recibida por el propio producto. Debe demostrarse que la dosis de radiación aplicada es eficaz y apropiada para la naturaleza del producto a esterilizar y su material de acondicionamiento. La eficacia del procedimiento puede ser confirmada por la utilización de indicadores biológicos adecuados. El sistema de dosimetría se compara con la ayuda de métodos físicos, químicos o microbiológicos con el mismo sistema dispuesto en una instalación de radiación de referencia.



Esterilización por gases: Los parámetros físicos y químicos significativos (tiempo, temperatura, humedad relativa, presión, concentración del gas) deben medirse y registrarse con la mayor frecuencia posible. Los productos que no pueden ser esterilizados en su recipiente definitivo necesitan precauciones especiales. Deben ser preparados en condiciones concebidas para evitar cualquier contaminación microbiana. Los locales de producción y el sistema de ventilación deben estar diseñados para reducir al máximo la contaminación microbiana y deben someterse periódicamente a un control apropiado. El equipo, los recipientes y los tapones y, si es posible, los componentes deben ser sometidos a un proceso de esterilización adecuada.

Filtración a través de filtros que retienen bacterias: Las disoluciones pueden ser filtradas a través de membranas de porosidad nominal inferior o igual a 0,22 μm, o a través de otro
tipo de filtro que retenga bacterias. Se deben tomar precauciones que aseguren el mantenimiento de las propiedades del filtro durante su utilización. En el caso de la filtración de un líquido en el que se pueda desarrollar un crecimiento microbiano, los mismos filtros no deben ser utilizados si la duración del procedimiento es superior a un
día de trabajo. Los productos que se someten al proceso de filtración descrito anteriormente y algunos otros, son preparados en condiciones asépticas. Pueden someterse a un tratamiento final por el calor compatible con su termoestabilidad, si este tratamiento se demuestra justificado. Las condiciones de preparación pueden, en ciertos casos, ser controladas con la ayuda de un medio de cultivo apropiado, previamente esterilizado repartido en las mismas condiciones que el producto a examinar; el medio se incuba y después se examina a fin de descubrir una eventual contaminación.



Los indicadores biológicos son preparaciones de microorganismos seleccionados por su alta resistencia a uno o más métodos de esterilización. Pueden utilizarse para confirmar la eficacia de un proceso de esterilización. El indicador biológico tiene que ser claramente distinguible del producto a esterilizar, con el fin de evitar cualquier mezcla o contaminación del producto. El crecimiento de los microorganismos testigos que son sometidos al proceso de esterilización demuestra que éste es insuficiente. Un indicador biológico puede estar constituido por unidades del producto a examinar inoculadas artificialmente o por sustancias fibrosas, arena, vidrio, láminas metálicas que sirven de soporte a los microorganismos testigo, simulando los productos contaminados.




Los microorganismos testigo deben depositarse en sitios considerados como los más difíciles de esterilizar. La elección de los microorganismos testigos se basa en los criterios siguientes:

a) La resistencia de la cepa testigo al método particular de esterilización debe ser grande, comparada con la resistencia de todos los microorganismos patógenos y la de los contaminantes microbianos del producto.
b) La cepa testigo no debe ser patógena.
c) La cepa testigo debe ser cultivada fácilmente.

Un indicador biológico se caracteriza por la cepa de microorganismos testigo que incorpora el número de unidades formadoras de colonias por unidad de indicador, el valor D (1) y la fecha de caducidad. Sólo los microorganismos indicados deben estar presentes. Se debe precisar toda la información referente al medio de cultivo y a las condiciones de incubación.  El ensayo de Esterilidad, se aplica a las sustancias, preparaciones y objetos que, según la Farmacopea, deben de ser estériles, pero un resultado favorable solamente significa que no ha sido encontrado ningún microorganismo en la muestra examinada en las condiciones del ensayo. La extensión de este resultado a todo un lote de producto necesita la certeza de que todas las unidades que lo componen han sido preparadas de tal manera que hay un alto grado de probabilidad de que hubieran satisfecho el ensayo. Es evidente que esto depende de las precauciones tomadas en el curso de la fabricación.



Para los productos sometidos a un proceso de esterilización en sus recipientes finales y sellados, la prueba física, con fundamento biológico y registrado automáticamente que testimonia el correcto desarrollo del tratamiento de esterilización en la totalidad del lote, es de una fiabilidad superior a la del ensayo de esterilidad. Este último sin embargo es el único método analítico disponible para cualquier autoridad que tenga que controlar la esterilidad de un producto. Un ensayo de esterilidad debe realizarse en las condiciones estudiadas para eliminar todo riesgo de contaminación accidental del producto en el curso del ensayo, por ejemplo utilizando campanas de flujo laminar de aire estéril. Las precauciones tomadas para evitar tal contaminación no deben afectar a los microorganismos cuya presencia deba ponerse de manifiesto en el ensayo. La eficacia de las precauciones observadas debe ser regularmente verificada por un control del aire y de las superficies de trabajo, efectuando paralelamente controles de preparaciones de las que se sabe que son estériles.




Los medios de cultivo adecuados para el crecimiento de bacterias anaerobias y aerobias y
para hongos, así como sus métodos de preparación se describen más adelante. Pueden utilizarse otros medios siempre que haya sido demostrada su capacidad para asegurar el crecimiento de una amplia gama de microorganismos. Deben satisfacer los ensayos que se indican, efectuados sobre cada lote de los medios elegidos, antes de utilizarlo, o paralelamente al ensayo del producto a examinar.

Esterilidad: Se incuban en cada caso durante 7 días como mínimo, a 30-35 °C, porciones de los medios destinados a evidenciar las bacterias y a 20-25° C, las porciones de los medios destinados principalmente a evidenciar contaminación por hongos. No deben presentar ningún crecimiento microbiano.

Propiedades nutritivas.: Se siembran tubos de los medios escogidos respectivamente con 100 microorganismos viables aproximadamente (aerobios, anaerobios y hongos) y se incuban durante 7 días como máximo a las temperaturas indicadas arriba (Esterilidad). El medio es adecuado si permite un crecimiento rápido y abundante de los microorganismos que correspondan. Si el medio destinado principalmente a la búsqueda de hongos sirve también para el ensayo de esterilidad bacteriana, debe ser sometido a un ensayo con ambos tipos de microorganismos. 



Si en el curso de la incubación, el crecimiento microbiano es similar en presencia y en ausencia del producto a examinar (crecimiento precoz y abundante), este último no tiene actividad antimicrobiana y el ensayo de esterilidad puede ser efectuado sin modificación. Si los cultivos que contienen el producto a examinar presentan un crecimiento más débil, retardado, o totalmente inhibido respecto a los cultivos que no contienen éste producto, éste último tiene una actividad antimicrobiana por lo que debe ser eliminado por filtración, por dilución, o por neutralización, antes o durante el curso del ensayo de esterilidad. La eficacia de la eliminación debe de ser controlada volviendo a repetir el ensayo.






"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HABITO"

ARISTOTELES



LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.