lunes, 31 de julio de 2017

ENFERMEDADES TRANSMITIDAS por los ALIMENTOS - Revisión (Parte 21)

"La duda es uno de los muchos nombres de la inteligencia"
Jorge Luis Borges


ENFERMEDADES TRANSMITIDAS por los ALIMENTOS - Revisión 
(Parte 21)





MEDICAMENTOS (ANTIBIÓTICOS y HORMONAS)

Los alimentos frescos como las carnes, las leches y los huevos, pueden presentar rastros o cantidades significativamente contaminantes de antibióticos, probioticos y hormonas o sus sucedáneos. Los antibióticos y otros medicamentos como las sulfas, se utilizan para tratar y prevenir las enfermedades del ganado, y sus residuos se acumulan en el organismo del animal tratado. En ocasiones, se utilizan para favorecer un mejor aprovechamiento de la comida por los animales. Los residuos medicamentosos se acumulan en los animales tratados, por lo que llega al consumidor a través del consumo de los productos derivados de dichos animales, como carne, leche y huevos. Dependiendo de la naturaleza del medicamento y de la dosis acumulada en el animal, pueden provocar desde reacciones alérgicas hasta intoxicaciones agudas. Entre algunos de estos residuos, cabe mencionar el Clenbuterol, que se usa para estimular partos y para favorecer el engorde forzado del ganado y ha sido responsable de intoxicaciones agudas en el ser humano. Otro ejemplo son las Hormonas naturales y sintéticas que se emplean para uso terapéutico, pero también para estimular el crecimiento de los animales con efectos cancerígenos y malformaciones fetales. En los años recientes se ha comenzado a catalogar a los antibióticos como contaminantes emergentes ya que, si bien, han servido indiscutiblemente para el tratamiento de enfermedades, también es cierto que en muchas ocasiones se ha tenido un consumo y un desecho irresponsables de los mismos. Los antibióticos son utilizados para terapia en humanos y en animales.


Gran parte de estos antibióticos son liberados en el ambiente acuático, representando un potencial riesgo para el ecosistema y para la salud pública, ya que estos antibióticos desechados pueden ser consumidos por los animales marinos o terrestres que, al momento de ser utilizados para el consumo humano, ponen en riesgo la salud de la población porque una pequeña dosis de antibióticos estaría siendo consumida. Dichas dosis pueden provocar reacciones alérgicas como urticaria y asma; crear cepas resistentes a los mismos, y en algunos casos, aún en pequeñas dosis, estos residuos pueden ser carcinogénicos, teratogénicos, mutagénicos, causar inhibición o inducción enzimática e interactuar con otros compuestos presentes en el medio ambiente. Por otro lado, los antibióticos también pueden estar presentes en alimentos ya que después de la administración de un tratamiento veterinario aparecen en carnes y leche, dado que en muchas ocasiones no se respeta el periodo de tiempo después del cual podrán obtenerse los productos para consumo libres de antibióticos.

Resultado de imagen para medicamentos en alimentos

Además, si la leche empleada en la elaboración de derivados lácteos fermentados como el yogur y el queso contiene pequeñas cantidades de antibióticos, la capacidad de fermentación será inhibida, lo cual provocaría un producto de mala calidad y por ende, grandes pérdidas económicas para la industria láctea. La problemática más alarmante es que muchos microorganismos patógenos pueden adquirir múltiple resistencia al ser sometidos a bajas concentraciones de antibióticos, lo cual representa un serio problema para el ser humano. Cada vez es mayor el número de casos en que antibióticos considerados eficaces dejan de serlo injustificadamente, la razón es la aparición de resistencia de los microorganismos a los medicamentos. En el caso de los alimentos, sí existen límites máximos permisibles de antibióticos, en el caso de aguas aún no se legisla.


Según un informe hecho en el 2013 por los Centros para el Control y Prevención de Enfermedades (CDC) sobre las amenazas de resistencia a los antibióticos, los organismos resistentes a los medicamentos en el suministro de alimentos de América representan "una grave amenaza" para la salud pública. El informe vincula el 22 % de las enfermedades resistentes a los antibióticos en los seres humanos a los alimentos contaminados y la investigación anterior ha sugerido que se tiene una probabilidad del 50 % de comprar carne contaminada con bacterias resistentes a los medicamentos. Otro artículo realizado en el 2013 por el Centro para la Ciencia en el Interés Público (CSPI) reportó que entre 1973 y 2011, hubo 55 brotes resistentes a los antibióticos transmitidos por alimentos en los Estados Unidos. Más de la mitad de los brotes fueron provocados por los productos lácteos, carne de res molida y aves de corral. El hecho del asunto es que, cuando los antibióticos se utilizan rutinariamente para criar animales para el consumo, los microbios desarrollan resistencia al medicamento, lo que hace que los antibióticos sean menos efectivos para el tratamiento de la enfermedad en los seres humanos. Y sin antibióticos eficaces, será muy difícil tratar a bebés prematuros, pacientes con cáncer, trasplantes de órganos, cirugías y medicamentos en la sala de emergencia, sólo por nombrar unos pocos. Ya estamos viendo los efectos del uso excesivo de antibióticos. Ahora las infecciones nosocomiales afectan a uno de cada 25 pacientes, y muchas de estas infecciones son resistentes a los medicamentos. De acuerdo con estadísticas de los CDC, dos millones de adultos y niños de Estados Unidos se infectan con bacterias resistentes a los antibióticos cada año, y por lo menos 23 mil de ellos mueren.


A pesar de que ciertos organismos ya se han vuelto inmunes a cada antibiótico que tenemos, incluyendo los llamados medicamentos de "último recurso", las granjas industriales siguen utilizando algunos de estos medicamento de último recurso en su ganado para fines no médicos. Es verdaderamente difícil entender cómo un pequeño beneficio adicional puede justificar el uso de medicamento que, al final, causaran la muerte de miles de personas, como resultado de la resistencia a los medicamentos. El uso de antibióticos en el ganado sano (incluyendo en los peces de piscifactoría) representan alrededor del 80 por ciento de todo el uso de antibióticos en los Estados Unidos, por lo que con el fin de detener el crecimiento de la resistencia a los antibióticos debemos abordar esta fuente. Según un informe en el 2009 de la Administración de Alimentos y Medicamentos (FDA) sobre este tema, las granjas industriales utilizaron 29 millones de libras de antibióticos ese año. La FDA ha solicitado recientemente a las compañías farmacéuticas eliminar voluntariamente las reclamaciones de promoción de crecimiento de ciertos antibióticos que son valiosos en el tratamiento de enfermedades humanas. Esto reduciría el uso al limitar el medicamento sólo para fines médicos. Pero hay tantas lagunas jurídicas que es muy poco probable que esta estrategia voluntaria sea suficiente. Sobre todo si tenemos en cuenta el rápido aumento de la resistencia a los antibióticos que ahora estamos viendo. En 2013, el CDC publicó un informe admitiendo que los antibióticos utilizados en la ganadería juegan un papel importante en la resistencia a los antibióticos y "deben eliminarse."


Sin embargo, a pesar de toda la evidencia de grave perjuicio, muy poco se está haciendo para reducir el uso antibióticos en la agricultura. Los antibióticos son drogas que se usan para combatir enfermedades causadas por diversos microorganismos tales como la mastitis, la neumonía o infecciones de las patas. Son administrados a los animales en diferentes formas, siendo las más comunes la intramamaria o la inyección intramuscular. La presencia de residuos de antibióticos en la leche es un problema que aqueja a toda la industria lechera, debido a que cantidades mínimas de antibióticos en la leche o la carne representan un problema de salud pública que no debe ser aceptado, además de ser ilegal. Se ha determinado que pequeñas cantidades de antibióticos en la leche, cantidades mínimas como 0.003 UI (unidades internacionales) de penicilina/ml, pueden afectar a una persona que sea alérgica a dicho antibiótico con problemas como ardor en la piel, comezón, asma y shock anafiláctico.



Además, existe el problema de la resistencia de los microorganismos a los antibióticos que puede reducir o eliminar por completo su acción y uso en el tratamiento de enfermedades. Otro problema relacionado con los antibióticos es la clara interferencia en el procesado de queso, mantequilla y yogur. Su presencia disminuye el ácido y afecta el sabor característico de la mantequilla. En el caso de los quesos, la presencia de antibióticos disminuye el cuajado de la leche y causa una mala maduración del queso. Basados en estos problemas los residuos de antibióticos en leche han atraído la atención a nivel mundial de los consumidores y de los legisladores generando reglas estrictas que controlan el uso de antibióticos en los hatos lecheros. Hay algunas medidas que todo dueño o responsable del manejo de su ganado puede adoptar en su explotación a fin de reducir el riesgo de contaminar la leche con antibióticos. Por su parte, tenemos a los disruptores hormonales, que son sustancias que interfieren en el funcionamiento del sistema endocrino. Incluyen algunos agentes naturales e innumerables compuestos de origen antropogénico. Su transferencia al ser humano a través de los alimentos constituyen una problemática de creciente interés. La contaminación del alimento reconoce diversos orígenes, de acuerdo al uso y propiedades de la sustancia involucrada. Ingresan a la cadena alimentaria por: contaminación del agua o el suelo, el uso agropecuario, la migración de compuestos del envase.



Los más destacados en éste grupo medicamentoso son: Estrógenos (Dietilestilbestrol, Bienestrol) y Anabólicos (Clenbuterol). Debe considerarse que la persona está sometida a exposiciones múltiples a partir de los alimentos, a las que se agregan exposiciones ambientales, laborales o por hábitos personales. Mínimas cantidades de diferentes agentes tienen efecto sobre el sistema endocrino, por lo tanto, el paciente puede presentar alteraciones hormonales sin las manifestaciones tóxicas propias de cada uno de los agentes. Recientemente se ha descrito en el estado de Jalisco (México) un brote (n=67) por clenbuterol debido al consumo de hígado bovino. Como resultado de la investigación epidemiológica se encontró que el 37 % de los hígados bovinos y porcinos contenían el producto.



Algunos fármacos interfieren en el funcionamiento del sistema endocrino sustituyendo las hormonas naturales, por variación de los niveles hormonales o por bloqueo de las mismas. Los efectos pueden presentarse años después de la exposición o en la generación siguiente. La exposición prenatal es la de mayor riesgo. Otros como el clenbuterol tienen efecto después del consumo, provocando disminución de la cantidad y la movilidad de los espermatozoides, endometriosis, abortos, embarazo ectópico, desarrollo sexual precoz en niñas, tumores hormono dependientes (mama, ovario, cuello uterino, próstata, testículo), criptorquidia. La ETA aguda y específica por clenbuterol se manifiesta por cefalea, taquicardia, extrasístoles y parestesias. Los estudios toxicológicos de residuos de medicamentos se basan en la determinación de ingestas diarias aceptables.




Estas se obtienen en animales de laboratorio, luego de administrarles el medicamento en el alimento durante períodos prolongados de tiempo. De esta manera se determina el nivel de dosis sin efecto (NOEL) y la ingesta diaria admisible (ADI). La ingesta diaria admisible es la máxima cantidad del medicamento que la especie experimental puede recibir sin ningún tipo de manifestación toxicológica. Pero esta es la parte que se lleva a cabo en animales de laboratorio. Luego debemos, de alguna manera extrapolar al hombre, cosa que no es fácil. En general, lo que se hace es aplicar a la ingesta diaria aceptable del animal de laboratorio un factor de seguridad que se ubica normalmente en un valor de 100, aunque a veces puede ser más bajo y, en oportunidades, ser elevado a 1000 (cuando los riesgos lo justifican). De esta manera se obtiene la ADI para el consumidor humano. El MRL es, simplemente, el máximo nivel de residuos que se puede aceptar en un determinado alimento para que un humano que lo consume en forma normal y abundante no supere el ADI para la droga en cuestión.



Otro parámetro, de especial importancia, especialmente tratándose del tema que nos ocupa, es el nivel de dosis sin efecto microbiológico (NMEL), que es el nivel de dosis que no produce efecto contra las especies bacterianas más sensibles, poniendo énfasis en las especies saprófitas del tracto gastrointestinal humano. Clásicamente la presencia de antimicrobianos en alimentos se ha asociado a distintos problemas, a saber: Alérgicos, Tóxicos y  Asociados a las resistencias bacterianas. Los problemas alérgicos son conocidos y afectan a la población sensibilizada, en general las bajas concentraciones de antibióticos alergénicos (beta lactámicos) no alcanzan para sensibilizar pacientes (aunque puede haber excepciones), pero sí para desencadenar reacciones que, en general, no son graves, aunque, eventualmente, pueden llegar a serlo (anafilaxia).


Algunos otros grupos de antibióticos son capaces de desencadenar reacciones alérgicas como las sulfamidas. De todas maneras siempre hay un componente fuertemente individual en estas reacciones que está representado por el terreno inmunológico del paciente. Los problemas toxicológicos, por su parte, son bastante difíciles de probar, dadas las bajas concentraciones residuales de estas drogas. Los aminoglucósidos, por ejemplo, son productos tóxicos. Su ototoxicidad y nefrotoxicidad han sido clásicamente descriptas. Sin embargo, insistimos, a concentraciones residuales, es posible que no existan riesgos toxicológicos para este grupo de drogas. Por cierto que, si se envían a consumo riñones de animales tratados, las concentraciones de droga serán más elevadas, dada la facilidad con que los aminoglucósidos se acumulan en este órgano. De todas maneras y, aún en este caso, será difícil que el consumo de un riñón en estas condiciones pueda generar problemas toxicológicos, dada la baja posibilidad de que un paciente continúe consumiendo riñones con residuos elevados de aminoglucósidos en forma continuada por un tiempo prolongado.



El que sí es capaz de dar lugar a problemas tóxicos es el cloranfenicol, y en este caso a dosis probablemente muy bajas. El cloranfenicol es capaz de producir dos tipos de manifestaciones toxicológicas: a. Una mielo depresión dosis dependiente que se presenta en el curso de un tratamiento con la droga y b. Una anemia aplástica, que es dosis independiente, que desarrolla en individuos susceptibles, y que es irreversible una vez instalada. Los derivados fenicoles tianfenicol y florfenicol, si bien pueden generar algún tipo de mielodepresión dosis dependiente, que cede al suprimir el tratamiento o bajar la dosis, no son capaces de producir la anemia aplástica que puede producir el cloranfenicol. Esta es la razón de que el cloranfenicol haya sido prohibido en algunos países, pero no haya ocurrido lo mismo con los otros fenicoles.



Como mencionáramos al inicio de esta sección, la resistencia bacteriana ha sido asociada largamente a la presencia de residuos de antibióticos en alimentos humanos. Sin embargo, y pensando lógicamente, las concentraciones residuales de antibióticos presentes en alimentos provenientes de animales tratados, difícilmente sean capaces de seleccionar bacterias resistentes, dado que a tan bajas concentraciones los antibióticos no pueden actuar sobre microorganismos resistentes ni sensibles. Especialmente cuando esas concentraciones se encuentran por debajo del NMEL. La resistencia bacteriana es un problema gravísimo que representa una preocupación mundial, que se produce por múltiples causas, que probablemente sea inevitable y con la que tenemos que lidiar en forma multidisciplinaria a efectos de limitar su emergencia y paliar sus efectos al máximo.
El riesgo más grande para la salud de los consumidores que implica la utilización de antibióticos en animales no está dado por los residuos, sino por el desarrollo de resistencias en bacterias de los mismos animales. Estas resistencias pueden, por supuesto, dar lugar a fallos terapéuticos en tratamientos veterinarios, y al riesgo de transferencia de bacterias resistentes de los animales al hombre, o de genes portadores de información que codifica resistencia de bacterias de animales a bacterias humanas.







BISFENOL A (BPA)



Los materiales en contacto con los alimentos son fuente potencial de contaminación. Generalmente se utilizan termoplásticos, cuya materia prima es el petróleo. La fabricación del plástico pasa por la polimerización de diferentes compuestos, este polímero, por su tamaño e insolubilidad, hace que no sean tóxicos. No obstante, para su fabricación, se utilizan diferentes aditivos para adaptarlos a sus variados usos. Estos aditivos producen monómeros que quedan libres en la matriz (polímero) y provocan un contaminación en el alimento. Este fenómeno es más conocido como migración y viene determinado por el tiempo y la temperatura de almacenamiento. Los mayores efectos tóxicos se producen por contaminación hormonal, ya sea por bloqueo o por potenciación, generando alteraciones en el desarrollo sexual, feminización o masculinización, infertilidad, insuficiencia hormonal y cáncer. Los principales plásticos utilizados por la industria son el polietileno (PE), el polipropileno (PP), poliestireno (PS), el policloruro de vinilo (PVC), el terftalato de polietileno (PET) y el policarbonato (PC). Entre los monómeros más tóxicos nos encontramos con: Cloruro de vinilo, gas incoloro propio del la fabricación del PVC; Estireno, líquido viscoso y de fuerte olor para la fabricación del PS; Acrilonitrilo, líquido para producir impermeabilidad y resistencia a los gases y las grasas y Bisfenol A, asociado con la fabricación de biberones.



Este último, 2,2-bis (4-hidroxifenil) propano, conocido comúnmente como BPA, es un producto químico orgánico (monómero) que sirve como materia prima para la fabricación de diferentes tipos de plásticos, especialmente policarbonato y resinas epoxi. Fue sintetizado por primera vez en 1891 por el químico ruso Aleksandr Dianin. Se obtiene por condensación de dos moléculas de fenol con una acetona en presencia de HCl, empleando cloruro de cinc como catalizador. El 70% de la producción de Bisfenol A, se destina a la fabricación de policarbonato, el 30% restante se destina a la producción de resinas epoxi. La producción mundial se estima en 3.000 toneladas al año; el policarbonato se utiliza ampliamente en la fabricación de materiales en contacto con alimentos, como biberones, vajillas, utensilios de horno y microondas, envases de alimentos, botellas de agua, leche y otras bebidas, equipos de procesamiento y tuberías de agua.


Resultado de imagen para bisfenol a

Las resinas epoxi se usan como revestimiento de protección de diversas latas de alimentos y bebidas, y como revestimiento de las tapas metálicas de las jarras y botellas de vidrio, incluidos los envases de las preparaciones para lactantes. El BPA se caracteriza por ser una sustancia sólida, de color blanco y con olor a medicina. El volumen de demanda mundial de este compuesto es muy alto, siendo su incremento anual de un 6-10%. Se considera que, debido a la fabricación del mismo, se vierten unas 2 Tm/año en aguas superficiales y se emite 1 Tm/año a la atmósfera. Los residuos de BPA pueden migrar a los alimentos, especialmente cuando sometemos el envase a elevadas temperaturas, por lo tanto, lo seres humanos están inevitablemente expuestos al BPA, especialmente los lactantes alimentados con biberón.


Según el European Comission’s Cientific Committe, el 99% de la exposición a BPA es de origen dietético, no obstante, existen otras vías de exposición como el aire, el agua o el suelo. Kang et al. 2006 ya determinaron la exposición a BPA por vía inhalatoria en atmosferas contaminadas, pero la exposición dietética es la principal causa de contaminación. Estas ingestas alimentarias, se calculan en Europa entre 0,2 μg/kg de peso corporal en lactantes amamantados, 2,3 μg/kg de peso corporal en lactantes alimentados de leche materna mediante biberones no fabricados con policarbonato, 11 μg/kg de peso corporal en lactantes alimentados con biberones fabricados con policarbonatos y 1,5 μg/kg de peso corporal en adultos. En Canadá, un estudio publicado en 2008, analizó la cantidad de BPA que tenían los alimentos a disposición de los consumidores. Analizaron 154 alimentos diferentes, encontrando diferentes concentraciones de BPA en 55 de ellos (36%).




La mayor cantidad de BPA se encontró en alimentos envasados: derivados del pescado (106 ng/g), maíz (83,7 ng/g), sopas (22,2-44,4 ng/g), habas (23,5 ng/g), guisantes (16,8 ng/g), leche en polvo (15,3 ng/g) y embutidos (10,5 ng/g). Los alimentos para bebés tenían 2,75 ng/g. Cantidades más bajas tenían productos que no estaban enlatados como la levadura (8,52 ng/g), algunos quesos (0,68-2,24 ng/g) o comidas rápidas (1,1-10,9 ng/g). Siendo las cantidades máximas establecidas por USA y la UE de 50 μg/kg/día, y de 25 μg/kg/día por el gobierno de Canadá, y la NSENO (nivel sin efectos negativos observados) concluido por la EFSA en 5 mg de BPA/kg, las ingestas calculadas para los diferentes grupos de edad/sexo, quedaban muy por debajo de la media. En Europa se estima que el nivel de migración de BPA al alimento es de 10 μg/kg de alimentos. La administración por vía oral de BPA en seres humanos es bien absorbida ya que sufre una metabolización completa en el hígado creando un metabolito principal denominado BPA-glucorónido (BPAG), el cual se excreta rápidamente en la orina y tiene una vida media de menos de 6 horas. El BPAG se produce gracias a la uridina difosfato glucosiltransferasa (UGT), y es altamente hidrosoluble, lo que, para algunos autores, demuestra la inactividad hormonal del BPA. Por otro lado el, Bisfenol A Sulfato, se reportó como otro metabolito, esta vez minoritario, del BPA en la orina de humanos. Gracias a la efectividad del metabolismo del BPA hay una muy baja exposición a BPA en forma libre. Las concentraciones más altas en sangre se encontraron pasada una hora de la administración por vía oral e intraperitoneal, y después de 4 horas en la subcutánea.


El BPA se elimina rápidamente de la sangre, dando resultados por debajo de los límites de detección transcurridas 72 horas de la inyección intraperitoneal y subcutánea y de 18 horas por vía oral. La principal ruta de eliminación fue la fecal, seguida de la urinaria. La eliminación en ratones, fue igual en machos que en hembras (86%-96%), pero los machos excretaron más por las heces (74%-83%) que las hembras (52%-72%). Principalmente el BPA eliminado por las heces fue en forma de BPA no metabolizable (86%-99%). En la orina, se eliminó en forma de BPA-glucorónido (BPAG). Las ratas, excretan el BPAG desde el hígado, vía bilis, al tracto intestinal. Esta recirculación enterohepática provoca que la eliminación del BPA en estos animales, necesite entre 20 y 80 horas. La diferencia en tamaño molecular del BPAG entre humanos y animales (550 vs. 350 Da) es lo que, a juicio de algunos investigadores, permite a los humanos eliminar más rápidamente el BPA, ya que este tamaño, no permite la circulación enterohepática de la molécula. En neonatos, algunas vías metabólicas necesitan más tiempo para conseguir la misma eficiencia que los adultos. La glucuronidación necesita entre 2 y 5 veces más tiempo y la filtración glomerular 1,7 veces.


La glucuronidación se efectuará eficientemente al mes y la filtración glomerular a los 7 meses. La Environmental Protection Agency (EPA), define los disruptores endocrinos como sustancias exógenas que alteran la estructura o función del sistema endocrino, provocando efectos adversos en los individuos y en sus descendientes. Hacia 1930, el químico británico Charles Edward Dodds, identificó el BPA como un estrógeno artificial. Algunas investigaciones han demostrado una relación directa entre la exposición a BPA y una alteración en la espermatogénesis, disminuyendo la cantidad y la calidad de esperma. El BPA puede estar asociado con un aumento de cánceres del sistema hematopoyético y aumentos significativos en tumores de células intersticiales de los testículos. El BPA altera la función de los microtúbulos y puede inducir aneuploidía en algunas células y tejidos. La exposición al BPA en los primeros años de vida pueden inducir o predisponer a lesiones pre-neoplásicas de la glándula mamaria y la próstata en la vida adulta.


La exposición prenatal a diversas dosis y ambientalmente relevantes de BPA desarrolla una alteración de la glándula mamaria en ratones, pudiendo considerarse marcadores de riesgo de cáncer de mama en humanos. Por lo tanto, BPA puede inducir transformación celular in vitro. En los cánceres de próstata avanzados con mutaciones del receptor de andrógenos, el BPA puede promover la progresión del tumor y reducir el tiempo de una recurrencia. Después de ponderar dichas pruebas según lo recomendado por la IARC y la EPA de EE.UU, se concluyó que el BPA no es probable que sea cancerígeno para los seres humanos. Además, la evaluación a la exposición revela que, el uso actual de BPA es muy reducido y la IARC (International Agency for Research on Cancer ) lo clasifica como tipo 3. La última evaluación sobre los materiales hechos a base de BPA la hizo la EFSA en 2010 y no identificó una necesidad de cambiar el consumo diario tolerable actual, establecido en 50 μg/kg día. La UE propuso una restricción de fabricación y comercialización de biberones de policarbonato desde el 1 de junio de 2011 y en octubre de 2011, se añadieron prohibiciones de venta a chupetes y mordedores. 

En los últimos años, el bisfenol A, ha recibido considerable atención de los medios de comunicación, con gran parte de la cobertura a partir de la declaración de enero de 2010 realizada por la Administración de Drogas y Alimentos (Food and Drug Administration; FDA, por su sigla en inglés) con respecto al progreso alcanzado en su evaluación de la inocuidad del BPA. Mientras que la FDA declara que estudios anteriores sobre el BPA han avalado la inocuidad de los bajos niveles actuales a los que los humanos se encuentran expuestos, recientemente anunció que tiene “algo de preocupación” acerca de los posibles efectos de la exposición al BPA sobre el cerebro, la conducta y la próstata en fetos, bebés y niños basándose en resultados de estudios del Programa Nacional de Toxicología (National Toxicology Program; NTP, por su sigla en inglés).


El BPA se usa en materiales para envases para distintos fines. Se usa para prevenir la corrosión de las latas y, cuando se lo usa como revestimiento epoxi, evita la contaminación de los alimentos. Cuando se lo usa en botellas, puede aumentar su resistencia al calor y su durabilidad. Es importante recordar que los envases sirven como importante vehículo de inocuidad alimentaria, ya que protegen los alimentos de los patógenos y otros contaminantes. La FDA apoya medidas razonables de precaución para reducir la exposición humana al BPA. En el caso específico de los bebés y recién nacidos, este organismo no recomienda a las familias cambiar el uso de la fórmula para bebés o de los alimentos porque los beneficios derivados de una fuente estable de buena nutrición superan cualquier posible riesgo de exposición al BPA. La reciente declaración de la FDA sirve como actualización de su evaluación del bisfenol A. El organismo, junto con los Institutos Nacionales de la Salud (National Institutes of Health; NIH, por su sigla en inglés), el Departamento de Salud y Servicios Humanos (Department of Health and Human Services; HHS, por su sigla en inglés) y el Centro para el Control y la Prevención de Enfermedades (Center for Disease Control and Prevention; CDC, por su sigla en inglés), apoya estudios de salud para evaluar más y determinar mejor los posibles efectos para la salud derivados de la exposición al BPA. Esto incluye $30 millones en estudios a través de los NIH. Los resultados de estas investigaciones se esperan en un plazo de 18 a 24 meses. La FDA apoya las medidas de la industria (alimentaria) para dejar de producir mamaderas y tazas para bebés que contengan BPA en el mercado de los Estados Unidos y sus esfuerzos para reemplazar o minimizar los niveles de BPA en los revestimientos de las latas para alimentos.


Se deben desechar mamaderas, tazas o recipientes para alimentos de plástico gastados o rayados; no colocar líquido muy caliente en productos que contengan BPA; verificar las etiquetas de las mamaderas y recipientes para alimentos para asegurarse de que puedan ser usados en el microondas y en el lavavajillas antes de usarlos con ese fin. Los consumidores pueden identificar los productos que contienen BPA observando los números en el triángulo que se encuentra en la base de los envases de plástico. Estos Códigos de Identificación de Resinas de la SPI se usan para identificar de qué tipo de plástico está hecho un producto. Los códigos de resinas uno a seis identifican resinas particulares, mientras que el siete (7) incluye todas las demás, incluidas aquellas derivadas del BPA y cualquier combinación de las otras seis: Tereftalato de polietileno (PET), Polietileno de alta densidad (HDPE), Cloruro de polivinilo (Vinilo), Polietileno de baja densidad (LDPE), Polipropileno (PP), Poliestireno (PS) y Otros. La Sociedad de las Industrias del Plástico (Society of the Plastics Industries, Inc; SPI, por su sigla en inglés) introdujo este sistema de codificación voluntaria en 1988. Desde entonces, muchos estados han incorporado el sistema a sus esfuerzos de reciclado para informar a los consumidores qué tipos de materiales pueden reciclar en su centro local. Estos números no indican el nivel de inocuidad del producto. Simplemente sirven para indicar de qué tipo de plástico está hecho el recipiente para ayudar a facilitar el proceso de reciclado.





BROMATO de POTASIO


El bromato de potasio es un oxidante que mejora las condiciones de las harinas, y popularmente se le conoce como “mejorador del pan”. Su uso está prohibido internacionalmente por el Codex Alimentarius. Fórmula molecular: KBrO3; Peso molecular:167.01; Características físico químicas: Cristales blancos o gránulos blancos, Punto de ebullición: se descompone a 370ºC, Punto de fusión: 350ºC, Densidad a 20ºC: 3.27 g/cm3, Solubilidad de agua: 133 g/litro a 40ºC y 498 g/litro a 100ºC. Es de fácil confusión con la sal o el azúcar. Ha determinado intoxicaciones por alimentos y bebidas. También es conocido, entre el personal de panaderías, por su efecto sobre el sistema digestivo. Ambas situaciones dan origen a intoxicaciones por error en la adición a la harina. El uso en productos de panificación casera representa un alto riesgo. En Pinamar (Buenos Aires, Argentina), ocurrió una intoxicación alimentaria masiva, con más de 90 afectados en un almuerzo comunitario en 1995. En junio de 1996 en La Plata (Buenos Aires, Argentina) se produjo un brote (n=110) por confusión con sal de mesa.


En el año 1989 se produjo en Cuba un brote donde se vieron afectadas 724 personas luego del consumo de pan contaminado accidentalmente. Se han reportado por los países de la región al SIRVETA durante el período 1993-2001 un total de 23 brotes (n=312). El bromato de potasio fue patentado como “mejorador” del pan en 1914, de acuerdo a una investigación realizada ese año en la Universidad de Pittsburgh (USA). El fundamento para su empleo era que tenía la capacidad de mejorar la consistencia del pan, debido a su efecto oxidante sobre la harina. En el proceso de elaboración de pan se agregaba directamente a la harina y actuaba durante todo el proceso de fermentación y la primera etapa del horneado, modificando proteínas y dando un gluten más elástico, de forma tal que la masa podía absorber mayor cantidad de agua y retener más dióxido de carbono, obteniéndose así mayor volumen. Existen otros usos propuestos para el bromato de potasio en la industria alimentaria como por ejemplo, en la producción de cerveza. Los bromatos son compuestos muy bioestables y sólo una pequeña proporción puede convertirse a ión bromuro, menos tóxico. El mecanismo para explicar su acción tóxica es doble: 1º La degradación a ácido bromhídrico en el estómago, que determina irritación gastrointestinal y 2º La capacidad fuertemente oxidante de los bromatos que facilita su penetración en las membranas biológicas, y que contribuye a sus efectos tóxicos a nivel renal y ótico. La sordera puede ser secundaria a la degeneración de las células ciliares externas de la cóclea. A nivel renal puede provocar necrosis tubular con edema intersticial. El Bromato de potasio estaba autorizado en la Argentina desde 1952 como aditivo en harinas para la elaboración de pan.


A partir del año 1993, se elimina el uso del bromato para el MERCOSUR (Resolución Nº 73). Argentina conforme a sus compromisos con el mismo, se ve obligada a adecuar su legislación interna a esta resolución (Res. Nº 3/1995 del Ministerio de Salud). Finalmente se prohíbe en forma definitiva con la Resolución 190/98d del Ministerio de Salud y Acción Social, en la que no se otorga más prórroga al plazo acordado por la resolución anterior, para que el sector industrial de panificación adopte un sistema a fin de eliminar su uso. El fundamento de la prohibición es por los efectos carcinógenos (categoría 2B, IARC: posiblemente carcinógeno para humanos). Resulta interesante analizar los casos de intoxicación con bromato de potasio registrados en otros Servicios de Toxicología de Argentina.


En el Centro Nacional de Intoxicaciones, durante el período 1979/ 1993 se atendieron un total de 22 consultas por intoxicación con bromato de potasio, 11 de las cuales fueron accidentes y 6 tentativas de suicidio (en 5 casos no se registró la causa). La sintomatología referida era vómitos y diarrea (15 pacientes) y 10 pacientes presentaron insuficiencia renal aguda (3 leves y 7 graves). Como secuela, uno de los pacientes desarrolló insuficiencia renal crónica y 2 casos, sordera. El mismo servicio denuncia entre junio y noviembre de 1993 un total de 26 consultas, 7 accidentes, 7 intoxicaciones laborales, 8 intoxicaciones alimenticias y 1 tentativa de suicidio. En el Centro de Toxicología del Hospital Fernández durante el año 1993 se atendieron 4 pacientes que presentaron vómitos y diarrea. El Centro de Toxicología del Hospital de Niños de Córdoba en el período comprendido entre 1989 y 1999 atendió 11 pacientes por intoxicación con bromato de potasio que requirieron internación, el 100% de los pacientes presentó síntomas de irritación gastrointestinal, en un caso con deshidratación moderada, 2 pacientes presentaron nefrotoxicidad requiriendo en uno de ellos diálisis peritoneal.


El grupo de edad más afectado por la intoxicación es el comprendido entre los 30 y 39 años de edad. Predomina el sexo masculino (70%). En el 40% de los casos presentan períodos de latencia hasta la consulta menores a 2 horas. Entre media hora y dos horas aparecen los síntomas gastrointestinales. La pérdida de audición puede aparecer entre 6 y 24 horas. Entre dos y tres días puede aparecer la falla renal. La presentación del bromato de potasio es siempre en polvo, siendo la cantidad ingerida escasa en el 82.6%. La cantidad ingerida es un dato muy importante para poder predecir la evolución. Ha ocurrido muerte con cantidades menores a 5 gramos. La dosis letal estimada del bromato de potasio es de 200 a 500 mg/Kg. de peso corporal. (Lo que equivale a 10 a 25 gramos en personas adultas de pesos promedios). Las causas atribuidas a la intoxicación son no intencionales, como confusión de la sal de bromato de potasio con sal de mesa o azúcar, especialmente en niños, autointoxicaciones intencionales, error alimentario o error en la dosificación con episodios epidémicos por cantidades elevadas agregadas al pan y utilización con fines "bromistas" entre trabajadores de la industria panadera debido al efecto pseudo laxante que provoca agregándola en infusiones, especialmente mate y café. La mayoría de los casos presentó síntomas ligeros, o moderados. Cinco casos no presentaron síntomas y en solamente uno se observan síntomas graves. Esta corresponde a una autointoxicación por intento de suicidio que desarrolla insuficiencia renal y sordera permanente.


Los signos más comunes a todos los casos fueron gastrointestinales. Resulta interesante mencionar un episodio, que ocurrió en el año 2000 en una escuela rural secundaria de una localidad del sur de la Provincia de Santa Fe donde un grupo de alumnos para hacer una broma a sus compañeros, había agregado bromato de potasio al tanque de agua afectando por lo menos a 10-12 alumnos con cuadros de gastroenteritis. El bromato había sido tomado de la panadería de la escuela y posteriormente se averiguó que había sido comprado recientemente en una droguería. Luego de la prohibición del bromato de potasio en 1997, se observó una disminución de 3.6 veces el número de casos por esta sustancia, pero esta diferencia no resultó estadísticamente significativa. El caso del bromato resulta particular porque se trata de un aditivo alimentario y aparentemente no se ha retirado de todas las panaderías a pesar de la prohibición de su uso.


En los casos registrados post-prohibición, “no lo usan pero aún lo mantienen”, argumento de difícil credibilidad. La intoxicación con bromatos es de baja incidencia en muchas partes del mundo desde hace décadas. El empleo amplio del bromato de potasio en panaderías como mejorador de harinas para panificación constituyó la principal fuente de intoxicación con esa sustancia en nuestro país. En los Centros de Toxicología de Argentina se han registrados en los últimos años cientos de consultas por esta intoxicación. Fue prohibida en nuestro país para ese uso en 1997. Actualmente, su condición de producto prohibido convierte a todos los casos de intoxicación con bromatos de esa fuente, en indicadores de uso clandestino de una sustancia ya regulada. Los dos principales bromatos son el de sodio y el de potasio. Al referirnos a bromatos incluímos a cualquiera de los dos. Únicamente se aclara cuando se refiere a alguno en particular.


Entre los usos propuestos para el bromato de potasio se mencionan en el tratamiento de la cebada, en la producción de cerveza y en el tratamiento de la harina. Ha sido usado en Japón también para mejorar los productos de pasta de pescado. Se lo emplea como neutralizador en el rizado (o permanente) en frío y sus propiedades sugieren que el bromato no puede ser volatilizado y será absorbido sólo ligeramente en el suelo o sedimento. Debido a su capacidad fuertemente oxidante reacciona con la materia orgánica conduciendo a la formación del ion bromuro. El bromato se puede identificar y cuantificar por varios métodos, incluyendo la titulación iodométrica y la cromatografía líquida de alto rendimiento. Los límites de detección se extienden a partir de los 0.05 a 1 mg/litro. La cromatografía con la detección de la conductividad tiene un límite de detección de 5 µg/litro (método de la EPA USA, disponible por ejemplo en el laboratorio de control del medioambiente , de Cincinnati, OH,USA). Concentraciones de bromuro séricas pueden ser determinadas por el método de espectrometría. El bromato no está normalmente presente en el agua pero puede ser formado desde el bromuro durante la ozonización. Concentraciones de 60-90 µg/litro han sido reportadas en el agua ozonizada. Pequeñas cantidades de bromato pueden ser medidas en la harina o la masa durante la preparación del pan, pero esto es transformando en bromuro durante el horneado. Para la mayoría de la personas, la exposición al bromato puede ser significativa.


Si el ozono es usado para desinfectar el agua de beber la ingestión de bromato puede tener un rango de 120 a 180 µg /día. La sordera puede ser secundaria a la degradación de las células ciliares externas de la cóclea. A nivel renal puede provocar necrosis tubular con edema intersticial. (normas). La oliguria y la anuria puede ser secundaria a la depleción del volumen intravascular y la dilatación periférica. Este fenómeno puede ser causado por el derrame, escape o fuga capilar o posiblemente a la disminución del tono vasomotor. Se obtuvieron resultados positivos fueron obtenidos para mutagenicidad del bromato de potasio en Salmonella Typhimurium usando test de Ames y para aberraciones cromosómicas en cultivos de células fibroblásticas de Hámster chinos. El bromato de potasio es un carcinógeno completo porque posee actividad en la iniciación y en la promoción de la tumorogénesis renal, sin embargo el potencial visto ha sido débil en ratones hámster. En contraste con esto, el bromato de potasio mostró un fuerte potencial para producir aberraciones cromosómicas in vivo e in vitro. El bromato de potasio tiene actividad inhibitoria sobre la peroxidación lipídida en el riñón. Los radicales libres generados por el bromato de potasio fueron implicados en los efectos tóxicos y carcinogénicos, especialmente porque el bromato produce 8-hidroxydeoxyguanosina en el riñón de ratas. Un número de estudios de casos de intoxicaciones agudas en humanos con bromato de potasio ha sido reportado siguiendo la ingestión accidental o tentativa de suicidio. No se conocen que existan publicaciones de casos letales por bromato en Argentina.


Los signos guías o centinelas de intoxicación aguda son irritación gastrointestinal, falla renal, depresión respiratoria y sordera. El cuadro clínico en su mayoría es reversible a excepción de la falla renal y la sordera que pueden o no serlo. Los signos y síntomas por aparatos son los siguientes: Aparato auditivo: Tinnitus y pérdida de la audición sin pérdida de la función vestibular de comienzo rápido y de evolución irreversible, que es más frecuente en pacientes adultos (85%) que en niños. El comienzo de la sordera ocurrió dentro de las 4 a 16 horas en pacientes adultos y dentro de los 7 días a 3 meses en dos niños; Aparato cardiovascular: hipotensión es bastante común y miocarditis ha sido reportada; Aparato respiratorio: puede ocurrir depresión respiratoria, hipo persistente puede ser notado, así como taquipnea y edema pulmonar; Sistema Nervioso: depresión sensorial, letargo y coma pueden ocurrir. En niños se suele observar transitoria inquietud previo al estado de apatía y letargo.


Se observaron convulsiones en casos de falla renal aguda. Neuropatía periférica tardía sensitivo-motora pasadas las 4 semanas, ha sido observada. Aparato gastrointestinal: Náuseas, vómitos severo dolor abdominal y diarrea ocurren después de 1.5 a 2 horas post ingestión. Estos efectos han sido atribuidos a la acción cáustica del ácido brómico y del bromuro producidos por la acción del ácido clorhídrico del estómago sobre el ion bromato. Aparato genitourinario: la falla renal es una manifestación frecuente en la sobredosis, y puede ser causa de muerte en el hombre y en animales, es aparentemente debida a la acción nefrotóxica del bromato y generalmente se desarrolla en forma insidiosa entre los 3 y 7 días y puede ser irreversible. Comienza 2 a 3 días siguiendo a la ingestión, puede persistir durante 3 semanas y puede ser irreversible. Acetonuria, albuminuria y hematuria pueden estar presentes.


Alteración de la funcionabilidad renal debido a la esclerosis glomerular y la fibrosis intesticial. En intoxicaciones graves en niños, oliguria o anuria fue observada durante el primero y segundo día, pero la formación de orina reapareció espontáneamente sobre el 3er y 4to día. Cambios Hematológicos: hemólisis y trombocitopenia han sido descriptas. Anemia y disminución de la hemoglobina fueron descriptas. La metahemoglobinemia no ha sido reportada en humanos ni en perros, pero ha sido observada en cerdos de guinea. Fluidos y electrolitos: Acidosis metabólica en combinación con la falla renal aguda ha sido descripta, edema generalizado puede ocurrir, así como anormalidades electrolíticas tales como hipernatremia, hipercloremia; Efectos psiquiátricos: esquizofrenia ha sido reportada. El efecto cancerígeno del compuesto fue reconocido por la Agencia Internacional de Investigación para el Cáncer en 1983, luego de que el Científico japonés Yuki Kurokawa demostrara que esa sustancia provocaba cáncer en ratas en un período relativamente corto y con las cantidades de exposición cercanas a las empleadas en el pan y la harina.


Este descubrimiento cambió radicalmente la historia del compuesto y convirtió a Japón en el primer país en regular su utilización. En 1983, la FAO y la OMS propusieron no aceptar concentraciones mayores de 75 mg por kilogramo de harina. Dos años después la Health and Welfare Agency de los Estados Unidos bajó el límite máximo a 50 mg y propuso incluir el bromato de potasio en la lista de sustancias prohibidas para el consumo humano. Luego, en 1989, la Comisión de la Comunidad Europea prohibió totalmente su uso en los alimentos, decisión secundada por la FAO y la OMS en 1992 y recomendada a todos los países miembros. Por último, estudios realizados por el Comité Mixto FAO-OMS, indicaron que el bromato de potasio también produce Tumores de células renales, las células peritoneales y las células foliculares de la tiroides. Existen conclusiones presentadas por la Argentina ante las negociaciones del MERCOSUR: a) plantea el uso del bromato como coadyuvante de tecnología y no como aditivo alimentario.


Entendiéndose como coadyuvante a toda sustancia excluyendo los equipamientos y los utensilios que no se consumen por sí solo como ingredientes alimenticios, y que se emplean intencionalmente en la elaboración de materias primas y alimentos o sus ingredientes para obtener una finalidad tecnológica durante el tratamiento o elaboración. b) Sostiene que se podría admitir la presencia de trazas de la sustancia o sus derivados. c) Recomienda que se identifique con un color definido los envases como medida de seguridad.  Este mismo informe dice en su conclusión: la existencia de bromato de potasio es transitoria ya que este se convierte en bromuro de potasio; el nivel de detección es de 5 partes por billón lo que impide indicar la presencia de trazas de bromato por debajo de esos niveles. Este tipo de acción convierte al bromato de potasio en un coadyuvante de elaboración más que un aditivo alimentario. En la consulta a los distintos sectores involucrados en el tema, obra opinión del Departamento de Salud del Trabajador, quienes sostienen: a) El peón de panadería se caracteriza por ser un trabajador joven, con poca experiencia, sujeto a alta rotación, en lugares donde no se cumplen medidas de seguridad laboral. Esto condiciona las medidas de prevención en el uso del bromato de potasio; b) Otros países ya dejaron de usarlo y c) La preocupación de esta área no pasa por la posible toxicidad por el consumo del producto elaborado con bromato de potasio, que no la descartan, sino que el área de mayor riesgo está instalada en el uso del bromato como producto químico por parte de los trabajadores, diariamente expuestos a la fuente tóxica.


Se solicitó informe a distintos especialistas en toxicología quienes aseguraron que modificar la resolución ministerial autorizando el uso de preparados de harina con bromato aumenta el riesgo, considerando los múltiples usos que se le da a la harina, y el número mayor de población potencialmente expuesta originados en uso o distribución de este preparado, una mezcla de hasta un 10% implica la manipulación de un producto de dosis letales, casi tanto como producto puro, por lo tanto ratifica la posición de discontinuar con el uso. Otros sostienen que la nueva modalidad de mezclar harina con el aditivo por un lado disminuiría la mayoría de los accidentes por "error" voluntario pero incrementaría la posibilidad de intoxicaciones masivas por cálculo inadecuado o por el uso de la preparación inadecuado en lugar de harina común.


La Dirección de Promoción y Protección de la Salud (Dirección Nacional de Medicina Sanitaria), opina sobre el modelo de resolución y sostiene: a) La toxicidad del bromato de potasio por su sola presencia, b) La población más expuesta es la de trabajadores panaderos que se caracteriza por su falta de experiencia, personas muy jóvenes, sujetos a alta rotación, en lugares de trabajo donde en la mayoría no se cumplen con las medidas de seguridad e higiene. El Departamento de Salud del Trabajador, realiza el informe final de su área, bajo las siguientes consideraciones: a) Sostiene discontinuar con el uso del químico, b) parece viable establecer un tiempo para la adaptación del sector productor, un año con opción a otro, contra presentación de un plan de reconversión y evaluación sanitaria de la población más expuesta, c) Preocupa la posibilidad de la comercialización de un formulado al 10% del bromato en harina, d) Sostiene que es más difícil confundir bromato con azúcar, que confundir harina con bromato con harina común, e) Advierte una población laboral nueva que estaría expuesta a la fuente tóxica que sería la que manipule el nuevo preparado y f) Se sugiere recurrir a otros elementos reemplazantes del bromato para el uso en la industria Panadera, y consultar a este sector.


Departamento de Prevención de Accidentes, eleva informe final a la Sub-Secretaría de Salud Comunitaria, retoma todos los argumentos vertidos anteriormente en contra del uso del Bromato de Potasio: alta toxicidad aguda, potencial de mutagenicidad, acción carcinogénica y la negatividad del índice de relación riesgo/beneficio, coincidente con las recomendaciones de la FAO/OMS, que lo considera como "no adecuado....como agente en el tratamiento de la harina". El riesgo es máximo en las poblaciones vulnerables (trabajadores de panaderías) Jóvenes varones de 10 a 19 años, grupo etario más comprendidos. Todos los centro toxicológicos consultados aconsejan discontinuar con el uso del químico. Los siguientes países han discontinuado su uso: Uruguay, Brasil, Paraguay, Bolivia, Suecia, Dinamarca, Bélgica, Portugal, Sudáfrica, España, Francia, Italia, Noruega, Austria, Holanda, Inglaterra, Alemania.

Imagen relacionada


Se subraya que "La existencia del producto químico en lugares de elaboración del pan y no la nomenclatura que se defina para presentarlo es lo que constituye el riesgo. Sabemos que en Argentina hay una buena tendencia a legislar y poca efectividad en el cumplimiento de lo legislado. Por ello y dado que las actividades de fiscalización y control han sido reconocidas como la mayor debilidad en la gestión de químicos en el país, es que proponemos imitar lo realizado por las autoridades de Salud de Uruguay, es decir: prohibir la importación total de esta sustancia como medio de cumplimiento de la anterior prohibición de uso. En la difícil tarea de armonizar las distintas posiciones el Ministerio de Salud y Acción Social, elabora un proyecto legislativo, que a criterio de quien suscribe se atrevería llamarlo de "transición", al establecer un período que podría denominarse "puente" entre la legalidad del uso del bromato de potasio y la prohibición del mismo. En el mercado argentino ya se encuentran aditivos sustitutos que no reemplazan al bromato en todas sus propiedades, pero son inocuos para la salud, entre ellos: El ácido ascórbico; vitamina natural que actúa durante un lapso menor que el del bromato de potasio, solo durante el amasado y la fermentación. El Código Alimentario Argentino fija un máximo para su utilización de 200 gr/100 Kg harina. La azodicarbonamida; su modo de actuar es rápido y breve, sólo durante el amasado. Suele utilizarse en, mezclas con el anterior, potenciándose así la efectividad de ambos y mejorando el resultado final.

Resultado de imagen para bromato de potasio


El Código Alimentario fija un máximo de 4.3 gr/100 kg de harina. Existen otros sustitutos para el bromato de potasio, pero como su utilización no está legislada, por ahora no se hallan permitidos en nuestro país, como sucede por ejemplo con el yodato de potasio o calcio y aceto-peróxido. La experiencia toxicológica con el bromato podría haber sido evitada si en Argentina se hubiesen adaptado las normas propuestas en su momento por la FAO-OMS. Es de esperar, que al igual que sucedió con el talio, las intoxicaciones con bromato desaparezcan de la República Argentina en un plazo perentorio.

Resultado de imagen para Código Alimentario




"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HÁBITO"

ARISTÓTELES





LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La bibliografía general  de los temas expuestos, así como todos los créditos fotográficos, están en poder del Autor y no se publican dada su extensión, pero se enviarán por mail a los interesados que los solicitaren con nota personal debidamente fundamentada.

lunes, 17 de julio de 2017

ENFERMEDADES TRANSMITIDAS por los ALIMENTOS - Revisión (Parte 20)

"La duda es uno de los muchos nombres de la inteligencia"
Jorge Luis Borges


ENFERMEDADES TRANSMITIDAS por los ALIMENTOS - Revisión 
(Parte 20)



INTOXICACIONES POR ALIMENTOS CONTAMINADOS CON SUBSTANCIAS QUÍMICAS
 (Consideraciones Generales)


En éstas entregas, analizaremos más facetas apasionantes que muchas veces se ignoran al hablar de las ETA(s) cuales son las intoxicaciones por las contaminaciones químicas tanto del agua de consumo cuanto de los alimentos de ingesta diaria. Los contaminantes químicos de los alimentos, son aquellas sustancias presentes en los mismos y que proceden de diversas fuentes: residuos de productos sanitarios que se dan a los cultivos o a los animales para prevenir enfermedades (pesticidas y residuos medicamentosos), residuos ambientales que las actividades mineras o industriales generan y se esparcen por tierra, aire y agua contaminando los alimentos (metales pesados, nitratos y dioxinas) y sustancias que se producen en el procesado o manipulación industrial de los alimentos (acrilamida, bisfenol A, ftalatos).


Cabe destacar que aquí nombramos solo a los más destacados y de mayor incidencia en el mundo. En todos los lugares donde se preparan alimentos, se manejan para la limpieza o el control de plagas, diferentes sustancias químicas peligrosas como los detergentes y los plaguicidas, los cuales de no ser debidamente etiquetados, transportados, almacenados y utilizados, pueden dar lugar a la contaminación de los alimentos y a la aparición de brotes de enfermedades, ocurridos casi siempre por equivocaciones o confusiones en su manejo. También en los lugares de preparación se utilizan sustancias químicas permitidas como aditivos en las recetas o en la formulación, como es el caso de los Nitratos en los productos cárnicos, que de no ser bien etiquetados y envasados, pueden confundirse por ejemplo con la sal común y causar una intoxicación.


Existen también otras sustancias antiguamente usadas en los procesos, pero prohibidas hoy por ser muy tóxicas, como el caso del Bromato de potasio utilizado en la elaboración del pan. Un 61% de los casos de intoxicaciones entre la población infantil de EEUU se producen a causa de la presencia de sustancias químicas, como plaguicidas, mercurio y plomo en los alimentos, en el agua y en el aire, según datos de la Asociación Estadounidense de Centros para el Control de Intoxicaciones. Según el informe La Salud en las Américas, que publica la Organización Panamericana de la Salud (OPS), los datos disponibles sobre las sustancias químicas y su efecto en la salud y el ambiente de América Latina y el Caribe no reflejan la dimensión del problema. Según información del Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), Brasil es uno de los cuatro países del mundo que utiliza más agroquímicos. El problema de la población infantil reside en el hecho de que ingieren más sustancias tóxicas ya que, según la OPS, "beben y comen más que los adultos".


El contacto directo con el suelo les hace especialmente susceptibles de acumular las sustancias tóxicas. Algunas de estas sustancias son los plaguicidas y la presencia de plomo en las tuberías de las redes de abastecimiento de agua potable. La presencia de patógenos o toxinas en el agua o alimentos contaminados es la segunda causa de muerte más común en niños. Se estima que es responsable del 12% de las muertes de menores de 5 años en los países en vías de desarrollo. Y es que la falta de agua potable y saneamientos básicos es uno de los principales problemas de estos países. "La probabilidad de que se presenten episodios diarreicos en menores de 5 años, una de las principales causas de mortalidad infantil tardía y de desnutrición, es inversamente proporcional a la disponibilidad de agua potable", afirma el informa de la OPS. El síndrome diarreico es especialmente devastador en niños menores de un año, entre los que se da una elevada mortalidad ya que se presenta como una de las principales causas de deshidratación y desnutrición.




ACRILAMIDAS


La acrilamida es un compuesto químico utilizada en procesos industriales como la elaboración de materiales plásticos en contacto con los alimentos, la depuración de aguas, o la fabricación de papel, cosméticos y pegamentos. Además la acrilamida se forma en el humo del tabaco y de los tubos de escape. Se ha descubierto que se genera de forma involuntaria al someter a altas temperaturas (superiores a 180ºC) alimentos ricos en almidón, como patatas y cereales. La acrilamida aparece en productos fabricados a partir de patatas o cereales, que han sido fritos u horneados, como, por ejemplo, patatas fritas, galletas, crackers, cereales de desayuno y pan. También se puede encontrar en menor cantidad en el café tostado y chocolate en polvo. Es una sustancia cancerígena que causa tumores y alteraciones en el sistema nervioso y reproductivo en animales de experimentación a niveles de exposición muy altos, sin embargo no hay evidencias en el ser humano, por lo que se ha clasificado como “probable carcinogénico en humanos”.


No obstante, las cantidades presentes en los alimentos son más de mil veces inferiores a las que producen alteraciones en animales, por lo que los expertos consideran muy poco probable que la acrilamida ingerida a través de los alimentos dañen la reproducción o sistema nervioso del consumidor. La neurotoxicidad de la acrilamida en el ser humano se conoce a través de casos de intensa exposición ocupacional y accidental durante el uso de la sustancia en procesos industriales para la producción de plásticos y otros materiales. Los estudios realizados en animales han demostrado también que la acrilamida provoca problemas reproductivos y cáncer. En 2002, estudios realizados en Suecia demostraron por primera vez la formación no intencional de concentraciones relativamente elevadas de acrilamida durante la fritura o el horneado de patatas y productos a base de cereales (a temperaturas superiores a 120ºC).


Aunque se desconocían las consecuencias sanitarias de las concentraciones de acrilamida que aparecen en los alimentos, ello hizo temer por la salud pública. A raíz del estudio sueco, la FAO y la OMS celebraron en 2002 una reunión consultiva especial de expertos para examinar los datos disponibles. Los expertos concluyeron entonces que era preciso realizar nuevos estudios para evaluar debidamente la toxicidad y los efectos en la salud de la exposición a la acrilamida presente en los alimentos. El Comité Mixto FAO/OMS de Expertos en Aditivos Alimentarios y Contaminantes de los Alimentos se reunió del 8 al 17 de febrero para examinar los posibles riesgos para la salud asociados a la acrilamida y otros cinco contaminantes de los alimentos. El Comité concluyó que, según las pruebas realizadas en animales, el cáncer es el principal efecto tóxico de la acrilamida y que el consumo de alimentos con este contaminante en las concentraciones en que aparece actualmente puede ser preocupante en relación con la salud pública.


El Comité afirmó que la conclusión se basó en una evaluación conservadora y que aún hay importantes dudas acerca del mecanismo de la toxicidad de la acrilamida, los supuestos utilizados para comparar los datos animales más pertinentes para la situación en el ser humano y la extrapolación de las estimaciones de la ingesta. La acrilamida se forma cuando ciertos alimentos, en particular alimentos de origen vegetal ricos en hidratos de carbono y pobres en proteínas, se cocinan a altas temperaturas, por ejemplo friéndolos, asándolos u horneándolos, generalmente a más de 120 ºC. En los países donde se dispone de datos, los principales alimentos que contribuyen a la exposición a la acrilamida son las patatas fritas de bolsa, el café y los productos a base de cereales (bollería y galletas dulces, panes y tostadas). La cantidad de acrilamida puede variar enormemente en un mismo alimento según distintos factores, entre ellos la temperatura y el tiempo de cocción.


Por esa razón, los expertos del Comité afirmaron que no era posible recomendar qué cantidades de determinados alimentos que contienen la sustancia pueden consumirse sin riesgo para la salud. El Comité indicó que la industria alimentaria ha informado de que está evaluando distintos medios para reducir el contenido de acrilamida en diversos alimentos, y recomendó que prosigan esos esfuerzos. Los expertos también advirtieron que habría que comprobar que todo cambio importante en los métodos de elaboración encaminado a reducir el contenido de acrilamida no menoscabe la calidad nutricional y la inocuidad de los alimentos, particularmente en relación con la contaminación microbiológica y la posible formación de otras sustancias nocivas. También hay que tener presente la aceptabilidad para el consumidor.


Por último, el Comité recomendó evaluar de nuevo la acrilamida cuando se conozcan los resultados de los estudios toxicológicos en marcha. Se espera que los resultados de los estudios a largo plazo más pertinentes estén disponibles dentro de dos o tres años; esos estudios pueden contribuir a reducir la incertidumbre actual que obstaculiza la estimación del riesgo. Basándose en esta evaluación, la FAO y la OMS recomiendan proseguir las actividades encaminadas a reducir las concentraciones de acrilamida en los alimentos. Las autoridades nacionales responsables de la inocuidad de los alimentos deben instar a los fabricantes pertinentes a esforzarse por mejorar las tecnologías de elaboración de alimentos con el fin de reducir sensiblemente el contenido de acrilamida en alimentos de gran consumo, como las patatas fritas (tanto en palitos como de bolsa), el café, la bollería, las galletas dulces, los panes y las tostadas. Los estudios preliminares de la industria y de otros investigadores parecen indicar que ya es posible conseguir importantes reducciones en varios alimentos.


Los conocimientos adquiridos ayudarán a elaborar directrices para la preparación de alimentos en el hogar. Por otro lado, los datos más recientes acerca de la acrilamida refuerzan las recomendaciones generales en relación con una alimentación saludable: hay que seguir consumiendo una dieta equilibrada y variada que incluya cantidades importantes de fruta y verdura y moderar la ingesta de alimentos fritos y ricos en grasa. Hace miles de años que nos servimos del calor para cocinar los alimentos. Sin embargo, además de conseguir el sabor, el aroma y el color deseados, el proceso de calentamiento de los alimentos puede conllevar la formación de sustancias menos recomendables. Una de estas sustancias que ha despertado un gran interés entre los científicos y los medios de comunicación en los últimos años es la acrilamida.


Al principio, la acrilamida sólo se conocía por su uso en procesos industriales como la fabricación de plásticos, colas, papel y cosméticos. La exposición fortuita de los trabajadores de estas industrias a niveles elevados de acrilamida llevó a la identificación de esta sustancia como una neurotoxina. Esto significa que, en dosis elevadas, la acrilamida puede dañar el tejido nervioso. En animales, se sabe que la exposición a dosis altas de acrilamida produce cáncer y afecta a la reproducción. La acrilamida puede formarse en algunos alimentos durante el proceso de calentamiento, cuando se alcanzan temperaturas de 120°C o más al freír, tostar o asar. Por ejemplo, inicialmente se descubrió que las patatas fritas caseras y empaquetadas (o chips), las galletas dulces y saladas, el pan tostado, los cereales de desayuno, las patatas asadas, ciertos productos de confitería y el café la contenían. Las investigaciones posteriores también han hallado acrilamida en las frutas deshidratadas, las verduras asadas, las aceitunas negras y en algunos frutos secos tostados.


La acrilamida se forma como resultado de lo que se conoce como la reacción de Maillard, que es una reacción química entre un aminoácido (componente básico de las proteínas) y un azúcar simple como la glucosa, la fructosa o la lactosa. El calor es necesario para iniciar dicha reacción, que produce toda una serie de cambios químicos cuyo resultado es la “caramelización” del alimento y la formación de una serie de compuestos de aroma y sabor. Estos compuestos combinados son los que proporcionan la apariencia y el sabor característicos de los alimentos cocinados. Uno de los ejemplos más típicos de la reacción de Maillard es el aspecto dorado que adquiere el pan blanco al tostarlo. El proceso de formación de la acrilamida en sí sólo se conoce parcialmente, ya que la reacción de Maillard es una de las reacciones químicas más complicadas que se producen en los alimentos. Sin embargo, su formación parece depender del tipo de alimento, la temperatura y el tiempo que se tarda en cocinarlo.


En general, el nivel de acrilamida de los alimentos que contienen almidón, como el pan o las patatas, aumenta cuando se cocinan a temperaturas altas y durante un período largo de tiempo. Otras investigaciones han mostrado que, además del tiempo y la temperatura a la que se cocinan los alimentos, la presencia de un aminoácido conocido como asparagina es otro factor determinante en la formación de acrilamida. Este aminoácido en concreto tiene una estructura química muy parecida a la de la acrilamida, lo que sugiere que podría transformarse en esta sustancia durante la reacción de Maillard. En general los científicos coinciden en que los alimentos con un mayor contenido de acrilamida son los alimentos fritos u horneados, como los pasteles, las patatas o el pan.


El Comité Mixto de Expertos en Aditivos Alimentarios (JECFA, por sus siglas en inglés) informa que el alimento que más contribuye al consumo total de acrilamida en la mayoría de los países son las patatas fritas (16-30%), las patatas fritas de bolsa (chips) (6-46%), el café (13-39%), los productos de pastelería y las galletas dulces (10-20%), así como el pan y la bollería (10-30%). Otros alimentos contribuyen menos del 10% del total. El consumo de acrilamida dentro de la UE varía entre los 0,3 y 1,4 microgramos por kilogramo de peso corporal al día, y la contribución de los diferentes tipos de alimentos varía dependiendo de la dieta nacional. Hasta ahora no se ha encontrado acrilamida en alimentos cocidos, escalfados o cocinados al vapor. Esto podría deberse a que la temperatura máxima empleada en estas técnicas no supera los 100°C y a la ausencia de caramelización.

Poco después del estudio sueco, el antiguo Comité científico sobre la alimentación humana (SCF, por sus siglas en inglés) publicó su opinión sobre la posible amenaza para la salud que representaba la presencia de acrilamida en los alimentos. La Organización Mundial de la Salud (OMS) afirma que: “la acrilamida pertenece a un grupo de sustancias químicas que no parece tengan un umbral claramente identificable de sus efectos; es decir, que concentraciones muy reducidas conllevarían un riesgo muy reducido, pero no la ausencia de este”. En 2005, el Panel de la Autoridad Europea de Seguridad Alimentaria (AESA) sobre sustancias contaminantes apoyó las conclusiones del informe del JECFA de que debían tomarse medidas para reducir la exposición a esta sustancia. Con el objetivo de conocer mejor el riesgo derivado de cocinar de los alimentos a temperaturas altas, la Comisión Europea financió el proyecto HEATOX (Sustancias tóxicas generadas al calentar los alimentos: identificación, caracterización y minimización del riesgo).

Resultado de imagen para proyecto HEATOX

Su objetivo era identificar, caracterizar y minimizar el riesgo que suponen los compuestos adversos producidos durante el proceso de cocinado de los alimentos. En particular, se concentró en la acrilamida y, en 2007, se publicaron los cuatro principales descubrimientos, basados en experimentos realizados en laboratorio: 1) La presencia de acrilamida en los alimentos puede ser un factor de riesgo para el cáncer; 2) Se puede reducir el nivel de acrilamida presente en los alimentos, pero no erradicarlo totalmente; 3) Contamos con métodos analíticos para detectar la presencia de acrilamida en los alimentos; y 4) Cocinar los alimentos puede producir otros compuestos importantes para la salud.


Los fabricantes de productos alimentarios han tomado medidas para reducir la formación de acrilamida en alimentos como el pan tostado, las galletas y otros productos horneados, y las patatas fritas, reorientando el enfoque del control de calidad y cambiando las recetas y los procesos de cocinado. Sin embargo, es importante resaltar que tales procesos no pueden modificar un elemento importante, cuyo impacto en el contenido de los precursores de la acrilamida en la materia prima agrícola es significativo: el de los productos estacionales o de temporada. La Asociación Europea de la Industria y Comercio de Alimentos y Bebidas (en inglés, CIAA) ha publicado una “Herramienta contra la acrilamida” que recoge los pasos a seguir tanto por los fabricantes de alimentos como por los consumidores para reducir el nivel de acrilamida en los alimentos. También se han considerado e incluido en la medida de lo posible los descubrimientos del proyecto HEATOX en la actualización de este documento. Actualmente, las investigaciones se centran en la posibilidad de reducir el nivel de acrilamida presente en los alimentos bloqueando la reacción que se produce durante el cocinado, mediante la biotecnología y la adaptación de las técnicas de cultivo actuales.


Así, por ejemplo, al aumentar el nivel de sulfato en la tierra y reducir el de nitrógeno, se ha observado una reducción del nivel de acrilamida en algunas cosechas. Es más, mediante la modificación genética se ha conseguido una variedad de patata totalmente nueva que contiene un nivel de azúcar inferior al de la patata convencional. Por otro lado, disminuyendo el nivel de azúcares reductores (como la glucosa) presentes en las patatas, es posible reducir, al mismo tiempo, la concentración de acrilamida, ya que este tipo de azúcares son un componente clave de la reacción de Maillard, durante la que se forman estos compuestos negativos. De forma similar, se trabaja con los genes de la planta responsables del control de la formación de asparagina. Puesto que la asparagina es el otro componente clave de la formación de acrilamida, si se reduce su nivel es muy probable que disminuya la formación de acrilamida durante la reacción de Maillard. Por regla general, cocinar los alimentos tiene numerosas ventajas que no debemos olvidar. Además de mejorar la palatabilidad y hacer más apetitosos los alimentos (aspecto, sabor, olor), reduce el riesgo de intoxicación. Igualmente, el proceso de cocinado hace que nuestro organismo asimile mejor muchos nutrientes esenciales. Mientras las investigaciones siguen identificando modos de reducir la formación de acrilamida al calentar algunos alimentos, los consumidores deberían evitar cocinar demasiado tales alimentos (para evitar el exceso de caramelización).

Resultado de imagen para reacción de Maillard

Seguir las instrucciones indicadas en los envases de alimentos y materiales de cocina son medidas útiles. Además, sería aconsejable que los consumidores cambiaran su manera de cocinar, cociendo más con agua o al vapor y empleando otros métodos similares que ayuden a reducir al mínimo la formación de acrilamida. Como algunos de los productos con un alto nivel de acrilamida también son muy energéticos, deberían consumirse con moderación como parte de una dieta sana y equilibrada. La Confederación de Industrias Agroalimentarias de la Unión Europea (CIAA, por sus siglas en inglés) cambió su nombre oficialmente en junio de 2011 y ahora es conocida como Food Drink Europe (FDE, por sus siglas en inglés). El proyecto europeo de investigación HEATOX finalizó en noviembre de 2007. Los descubrimientos de HEATOX se añadieron a la Guía contra la acrilamida de FDE (previamente CIAA).


La Guía se actualiza continuamente con los progresos científicos. En enero de 2014, FDE publicó unas series de folletos específicos para cada sector disponibles en 23 idiomas europeos con información de la Guía contra la acrilamida para los productores de pequeñas y medianas empresas. Los folletos cuentan con información de las herramientas más punteras que ayudarán al sector alimentario y de las bebidas europeo a mitigar la formación de la acrilamida en algunos alimentos. El último informe sobre la acrilamida del Comité Mixto FAO/OMS de Expertos en Aditivos Alimentarios (JECFA, por sus siglas en inglés) se publicó en 2011 y forma parte de su evaluación de algunos contaminantes en alimentos. JECFA ha informado que los principales alimentos que más aportan a la exposición en la mayoría de los países son las patatas fritas (10–60 %), patatas chips (10–22 %), pastas y galletas dulces (10–15 %) y pan y tostadas (13–34 %). Otros alimentos aportaron menos de un 10 % a la exposición diaria. La Comisión Europea (CE) emitió una Recomendación a los estados miembros (2007/331/EC) en 2007 sobre el control de los niveles de acrilamida en los alimentos. 


Este control se centra en los productos alimenticios que contienen un alto nivel de acrilamida y en aquellos que son parte esencial de la alimentación humana. A principios de 2011, la CE emitió los niveles indicativos de acrilamida en algunos alimentos según la información recogida en los controles. Estos valores no son un umbral de seguridad, solo cumplen con la función de alentar a las autoridades competentes para llevar a cabo investigaciones con el fin de determinar por qué se han excedido dichos niveles. Los valores se actualizaron en noviembre de 2013. La Autoridad Europea de Seguridad Alimentaria (EFSA, por sus siglas en inglés) publicó en 2012 información sobre los niveles de acrilamida hallados en un abanico de alimentos entre 2007 y 2010.


Estos datos se han usado como medida para ver si la industria alimentaria europea ha aplicado correctamente las estrategias identificadas en la Guía contra la acrilamida. Es importante saber si esas directrices son eficaces porque serán cruciales para los debates entre estados miembros en relación con la acrilamida. La información que se recogió se dividía en 10 categorías de alimentos distintas, aunque algunas de ellas se dividían en menos, como por ejemplo las patatas chips. El estudio no evidenció una tendencia de disminución significativa en los niveles de acrilamida en estas patatas. Los valores recomendados por la CE se superaron en un 3-20 % de las muestras de las diferentes categorías que se establecían en la información de control de 2010. El informe concluyó que se necesitaba más tiempo y descripciones más detalladas de las muestras para establecer una evaluación más precisa de las tendencias.


Un estudio publicado en 2013, realizado con el análisis de una mayor base de datos de concentraciones de acrilamida en patatas chips desde 2002 a 2011, mostró que, al contrario que en estudios anteriores, en ese periodo se mantuvo una tendencia general de disminución en los niveles de acrilamida. La Autoridad Europea de Seguridad Alimentaria (EFSA) ya está evaluando el impacto de la acrilamida en la salud humana. Este proceso tendrá en cuenta los avances internacionales, incluido el trabajo del JECFA. Se espera que la propuesta esté terminada y disponible para consulta pública en junio de 2014. La retroalimentación que se reciba ayudará a elaborar la opinión científica final prevista para 2015. En mayo del 2002, la Autoridad Alimentaria Nacional Sueca publicó un estudio en el que se informaba por primera vez sobre la presencia de grandes cantidades de acrilamida en los alimentos ricos en almidón cocinados a altas temperaturas (por encima de 120º C), como las que se generan durante las prácticas de fritura y horneado.


A raíz de este estudio, las agencias alimentarias del Reino Unido y de Noruega realizaron estudios de monitoreo para verificar los hallazgos, comprobando los resultados suecos. La Organización Mundial de la Salud (OMS) y la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) celebraron del 25 al 27 de junio de 2002 una reunión de científicos, médicos y especialistas en salud pública que tuvo como fin estudiar los datos sobre la presencia de acrilamida en los alimentos y hacer las recomendaciones necesarias tanto a los consumidores como a los investigadores en la materia. La acrilamida tiene la fórmula química CH2CHCONH2 y un peso molecular de 71.09; su temperatura de ebullición es de 125º C y la de fusión de 87.5º C. Es un producto químico intermedio (un monómero) empleado en la síntesis de poliacrilamidas. 


Tiene la apariencia de un polvo blanco cristalino y es soluble en agua, etanol, metanol, éter etílico y acetona, pero no en heptano ni benceno. Se polimeriza rápidamente al alcanzar el punto de fusión o al ser expuesto a la luz ultravioleta. La acrilamida sólida es estable a la temperatura ambiente, pero puede polimerizarse violentamente cuando se mezcla o expone a agentes oxidantes. En la Unión Europea se producen de 80 mil a 100 mil toneladas anualmente. Se emplea como floculante en el tratamiento del agua potable y en el procesamiento de la pulpa de papel. Se utiliza también para retirar sólidos en suspensión de las aguas residuales de la industria antes de su vertido, reutilización o eliminación, y asimismo como aditivo en cosméticos, acondicionadores de suelos, tratamiento de minerales y formulación de agentes selladores para diques, túneles y alcantarillados. Los fumadores también se exponen a la acrilamida durante el consumo de cigarrillos. En los seres humanos y en los animales, la neurotoxicidad es el riesgo más importante de ingerir acrilamida.


La exposición a altas dosis de esta sustancia provoca cambios en el sistema nervioso central, mientras que la exposición prolongada a bajas dosis da como resultado neuropatía periférica en presencia o ausencia de complicaciones sobre el citado sistema. Los resultados de algunos estudios llevados a cabo con roedores y primates impulsaron a la FAO a establecer 0.5 mg/kg/día como el nivel máximo de ingesta en humanos, el cual no produce la neuropatía; se estimó además la ingesta crónica permitida en 0.001 mg/kg/día. La acrilamida es tóxica en las células somáticas y germinales y posee el potencial de inducir daños hereditarios en los genes y cromosomas. Tiene potencial cancerígeno en ratas, de modo similar al de otros cancerígenos que están presentes en diversos alimentos, pero los niveles de ingesta de acrilamida son mayores, por lo que la Agencia Internacional de Cáncer (IARC) la clasificó como un probable cancerígeno en los seres humanos, por lo que la ubicó en la clasificación 2A.


En algunos estudios in vitro que incluían cultivos de células de mamíferos, y otros in vivo con ratas y ratones, se ha demostrado que produce daño al material genético de la célula e induce tumores en las ratas después de su administración. Así, se concluyó que la actividad de la acrilamida es la de un genotóxico y carcinógeno. No fue posible determinar un nivel de exposición responsable de los efectos originados; por consiguiente, se debe asumir que existe riesgo, aunque sea pequeño, en la exposición a niveles bajos. Los datos publicados indican su capacidad para provocar mutaciones en el código genético al formar combinaciones de ADN. Las recombinaciones inducidas de ADN pueden interferir con el proceso de replicación genética, lo que puede desembocar en la formación de tumores. Como hemos dicho antes, la exposición de ratas y ratones a la acrilamida aumentó la incidencia de varios tipos de cáncer.


Aunque por ahora se desconoce el mecanismo que lleva a desarrollar neoplasias, una de las teorías señala que la esta sustancia desencadena la mutagénesis al dañar el ADN. El equipo de investigadores del Instituto de Investigación Beckman, en Duarte (California), probó su hipótesis en células mamíferas al exponer el tejido conectivo e incorporar artificialmente un gen conocido como transgen. Las células tratadas con acrilamida formaban más combinaciones de ADN en determinados puntos del transgen, en comparación con las controles. El tratamiento de las células con bajas concentraciones de acrilamida se asoció con una duplicación del número de mutaciones en el transgen, en comparación con el grupo control. Esta tasa de mutación fue similar a la de las células tratadas con el conocido carcinógeno BPDE en bajas concentraciones. Los estudios epidemiológicos de las muertes por cáncer en trabajadores expuestos a la acrilamida debido a su trabajo no demostraron ningún aumento en su incidencia, pero no hay aún conclusiones definitivas debido a ciertos sesgos observados en los estudios. Según la información disponible, la IARC ha catalogado a la acrilamida como “probablemente carcinógena para los humanos”. Por esta razón, en el Reino Unido las autoridades de salud y ambiente recomiendan que la exposición a los genotóxicos cancerígenos como la acrilamida debe ser mínima. Los estudios hechos con ratas han demostrado ciertos efectos sobre el sistema reproductor masculino, manifestados en la disminución de la fertilidad de los machos. Las ratas macho tratadas con acrilamida desarrollan mesotelioma testicular y tumores en la tiroides, y las hembras tumores en la tiroides y en las mamas. En presencia del promotor cancerígeno TPA (12-0-tetradecanoyl-forbol-13-acetato) se produjeron neoplasias de piel.


No existen datos que permitan extrapolar a los humanos estos descubrimientos hechos en ratas. La información disponible todavía es insuficiente para estimar la ingesta total diaria de acrilamida en la población a través de los alimentos. Los estudios suecos indican que la ingesta podría ser de hasta 0.1 miligramos por día, lo que equivale aproximadamente a 0.0017 miligramos por kilo de peso corporal por día, siendo más de mil veces menor que la dosis necesaria para desarrollar efectos sobre el sistema nervioso o reproductor en los animales. La consulta realizada por la OMS a expertos especializados en cuestiones cancerígenas, toxicología, tecnologías alimentarias, bioquímica y química analítica, identificaron un número importante de asuntos que deben ser investigados. Por ejemplo, si bien se sabe que la acrilamida provoca cáncer en animales de laboratorio, no hay estudios que demuestren la relación entre la acrilamida y el cáncer en los seres humanos.


Los modelos teóricos para predecir si el cáncer se puede desarrollar en humanos a partir de los actuales niveles de ingesta no son lo suficientemente confiables para llegar a conclusiones serias. En los estudios hechos con ratas, la acrilamida tiene una potencia similar a la de otros agentes cancerígenos conocidos que se forman durante el cocinado, como es el caso de ciertos hidrocarburos que se forman en la carne frita o a la plancha. Pero los niveles de ingestión de acrilamida pueden ser mucho más elevados. Por ello, la consulta reconoce que el problema de esta sustancia en los alimentos es importante, pero que los datos hasta ahora disponibles no son suficientes para estimar cuantitativamente el riesgo de sufrir cáncer a partir de la acrilamida formada en la dieta. No es posible todavía determinar qué porcentaje de la presencia total de acrilamida en el cuerpo humano proviene de los alimentos hechos a base de almidón. Debido a que otros alimentos, como frutas, verduras, carnes y mariscos, así como las bebidas o los cigarrillos pueden constituir una fuente de acrilamida en el cuerpo humano, no es posible saber qué porcentaje proviene de tales alimentos. La acrilamida se genera en los alimentos ricos en almidón (como las papas y los cereales) a consecuencia de las altas temperaturas de cocinado, como la fritura, el horneado, el asado y la parrilla. Sin embargo, esos alimentos no tienen niveles significativos de acrilamida cuando están crudos, ni tampoco cuando se cocinan mediante la cocción o hervido, donde la temperatura alcanzada no rebasa los 100°C.


Las investigaciones realizadas en Suecia sobre el riesgo laboral de los trabajadores, determinaron que el grupo control, no expuesto a la acrilamida en su trabajo, mostraba en forma inesperada altos niveles de la misma en su organismo. Este hallazgo indujo a los investigadores a estudiar las posibles fuentes de exposición a la acrilamida, incluidos los alimentos. Así, se analizó una serie de productos de consumo habitual, que incluían papas fritas normales (chips); papas fritas cortadas en rebanadas finas que se fríen hasta lograr una textura crujiente y que suelen presentarse como aperitivos; papas fritas envasadas, panecillos y cereales. Se encontraron niveles de acrilamida que confirmaron las determinaciones suecas: la acrilamida no se hallaba en las papas crudas o cocidas, pero sí se hallaba en niveles significativos en las fritas.


También se demostró que el sobre cocinado (o sea, el freírlas hasta más allá del 40% del tiempo recomendado, por ejemplo 12 + 5 minutos, hasta que se vieran más doradas) aumentaba todavía más los niveles de acrilamida. Los niveles encontrados en las muestras oscilaban desde 0.31 hasta 3.5 mg/kg en el caso de las papas fritas. En las papas fritas sobre cocinadas se alcanzaron niveles de 12-12.8 mg/kg; entre 1.22 y 1.5 mg/kg en las papas fritas envasadas, y entre 0.11 y 2.4 mg/kg en los cereales. Como la acrilamida se forma en los productos ricos en almidón que se fríen u hornean a temperaturas superiores a los 120º C, independientemente si se elaboran en la industria alimenticia o se preparan en casa, es probable que se pueda encontrar también en otros alimentos elaborados a base de harina, como los cereales (que son ricos en almidón) que sufren los mismos tratamientos culinarios. A estos productos se pueden añadir las pizzas, churros, empanadas, pan, galletas, distintos tipos de tartas y otros más.


La acrilamida se forma durante la llamada “Reacción de Maillard”, que es un proceso térmico común que dota del color y sabor característicos a los productos sometidos a altas temperaturas durante un tiempo prolongado. Dicha reacción es la que explica por qué algunos productos fritos u horneados acaban tomando un característico color dorado y el olor propio de alimentos tostados. Es el caso de las papas fritas, las galletas o el pan, todos ellos tienen una notable proporción de carbohidratos. Los estudios realizados no han demostrado la razón ni el mecanismo mediante el cual se genera la acrilamida como consecuencia del cocinado. Diversos grupos de investigadores sospechan que la causa de que aparezca tal sustancia es un aminoácido llamado asparagina, que al ser calentado con ciertos azúcares provoca una reacción química que origina ese preocupante compuesto cancerígeno.


Las papas son especialmente ricas tanto en asparagina como en glucosa. Además, este aminoácido está presente en numerosos cereales y carbohidratos. La acrilamida se emplea en la fabricación de los plásticos y el papel que se utilizan como envases o empaques de alimentos. A consecuencia de ese contacto, la Unión Europea ha legislado que el límite máximo permisible de acrilamida es de 0.01 miligramos por kilo de alimento empacado en envases de plástico. Este valor contrasta con los altos niveles encontrados en los estudios de monitoreo. El límite legal establecido sólo se aplica a la acrilamida que pueda pasar de los envases de plásticos a los alimentos y no a la que se forma durante su cocinado. Un derivado, la poliacrilamida, se emplea en la depuración de aguas debido a que se adhiere a las partículas sólidas, reteniéndolas en el filtrado. Es el único polímero que elimina en forma adecuada ciertas partículas del agua y que no es tóxico en forma polimerizada.

Resultado de imagen para poliacrilamida

La industria química minimiza su cantidad manteniendo los niveles por debajo del límite permitido. El límite permisible de acrilamida en aguas aptas para beber establecido por la Unión Europea es de 0.0001 miligramos por cada litro de agua; por lo tanto, las cantidades de acrilamida que pueden ser detectadas en los alimentos como consecuencia de los envases o en el agua potable son insignificantes en comparación con los que se generan durante la fritura o el horneado. Para estos alimentos todavía no se establecen los niveles recomendados. Los datos del estudio realizado por la Food and Drugs Administration (FDA) de Estados Unidos revelan que no se ha encontrado acrilamida en los quesos procesados, leche o helados analizados. Pero distintas galletas saladas, que son la merienda de muchos niños, contienen un alto índice de la misma sustancia. En cambio, algunas comidas preparadas con pavo y verduras contienen muy poca. Ciertos alimentos muy habituales en la dieta infantil de Norteamérica, como la mantequilla de cacahuate y las galletas de chocolate, también incluyen acrilamida en su composición. La mayoría de las frutas y verduras no contienen acrilamida, pero sí los zumos preparados y las aceitunas negras. Los estudios de monitoreo indican que la acrilamida forma parte del 27.7 % de los alimentos en la compra promedio norteamericana.


La reunión de expertos FAO y la OMS sobre la acrilamida en alimentos concluyó, después de haber revisado la documentación disponible, que los nuevos hallazgos representan un problema serio y que la acrilamida habrá de ser incluida como una prioridad en la reunión de ese comité de expertos sobre aditivos alimentarios. Los conocimientos que se tienen en la actualidad no permiten responder a todas las cuestiones planteadas, por lo que se necesitan más estudios científicos y la creación de una red internacional que haga posible el intercambio de experiencias y la coordinación de los trabajos. Los modelos matemáticos para predecir el desarrollo de cáncer en los seres humanos a partir de los niveles medios de ingesta de acrilamida en alimentos no son suficientes para llegar a conclusiones definitivas y para hacer estimaciones cuantitativas del riesgo.


Por otra parte, se desconoce la toxicocinética y toxicodinamia de la acrilamida en el organismo humano. Los científicos consideran necesario realizar más estudios para identificar el mecanismo de formación de la acrilamida durante el proceso de cocinado; la epidemiología de los cánceres humanos frecuentes, la presencia de la acrilamida en otros alimentos distintos de los ricos en almidón, incluidos los que no son típicos de las dietas y las posibilidades de reducir la cantidad de acrilamida en alimentos cambiando su composición, los tratamientos a los que se les somete y otros factores. Las intoxicaciones o las toxiinfecciones debidas al consumo de alimentos crudos o insuficientemente cocinados son un asunto de gran importancia. La mayoría de los alimentos que se ingieren contienen sustancias que, consumidas durante periodos prolongados, pueden estimular el desarrollo del cáncer. Su desarrollo dependerá de los factores internos de tipo personal, de las dosis y del tiempo de exposición.


Existen otras causas que estimulan el desarrollo del cáncer, incluidos la contaminación ambiental, el estilo de vida, el medio laboral y otros. Debido a los recientes descubrimientos de la acrilamida en los alimentos y el alto consumo de alimentos fritos en la población mexicana, se puede esperar la aparición de los efectos dañinos en personas expuestas a esta dieta; sin embargo, los expertos advierten que el nivel de agentes que causan daños en el ADN y que son potencialmente cancerígenos –como es el caso de la acrilamida– debe restringirse y reducirse en los alimentos. Cuando se generan en los alimentos de forma natural, es necesario tomar acciones para determinar cuál es el nivel permisible que de forma razonable no entrañe peligro para la salud. Para esto se debe trabajar conjuntamente con la industria alimenticia a fin de aumentar el nivel de conocimientos sobre la acrilamida en los alimentos.

Las posibles consecuencias de tales descubrimientos para la industria son por el momento impredecibles, pero pueden tomarse algunas medidas sencillas que podrían reducir o eliminar la acrilamida de algunos alimentos protegiendo su estado higiénico y su sabor. Entre esas medidas se hallan las de agregar el aminoácido cisteína o minerales como el calcio, que impiden la formación de acrilamida, o bien cambiar las técnicas en el cocinado y preparación de los alimentos. Mientras no se disponga de nuevos datos, los expertos no recomiendan a la población que deje de consumir los productos ya estudiados; no existe un método práctico para evitar la presencia de acrilamida en los alimentos, y dado que aparece en muchos productos de consumo habitual, no es posible seguir una dieta equilibrada sin correr algún riesgo.


Advierten, sin embargo, que en una dieta equilibrada el consumo de productos fritos y ricos en grasas debe ser limitado. Por otra parte, una dieta saludable y equilibrada que incluya una buena cantidad de frutas y verduras parece tener un efecto protector ante ciertos tipos de cáncer. En conclusión, las recomendaciones de los expertos no son muy alentadoras. Durante la mayor parte de nuestra vida estamos expuestos a la contaminación alimenticia de compuestos químicos potencialmente cancerígenos. Dados nuestros hábitos alimenticios, es difícil modificarlos prescindiendo de platillos y formas de cocinado habituales en la dieta. El cocinado a temperaturas inferiores a las normales no es una solución porque el calor elimina organismos patógenos peligrosos. Como dijimos antes, se necesitan más estudios y pruebas antes de lograr un entendimiento total del problema y de sus implicaciones para la salud.

Resultado de imagen para acrilamida



"SOMOS LO QUE HACEMOS REPETIDAMENTE. EXCELENCIA, POR LO TANTO, NO ES UN ACTO SINO UN HÁBITO"

ARISTOTELES





LEGALES: El autor no asume responsabilidad alguna por la descarga, copia, distribución, modificación o alteración de los contenidos publicados, sean propios del mismo o de terceros, los cuales pudieren estar protegidos por Copyright, Derechos de Propiedad Intelectual, Derechos de Autor, o relacionados. La Bibliografía del tema expuesto y el crédito fotográfico está en poder del Autor y no se publica dada su extensión, pero se enviará por mail al interesado que la solicitare debidamente fundamentada.